
 

 
 
 
 
 
 
 
 
 
 
 

FpML® 5 User Guide 
2012 Edition 

 
 

 
 
 
 

 
 
 
 
 

 



 F
p

M
L

 a
t 

a 
G

la
n

ce
 

 T
he

 f
ol

lo
w

in
g 

di
ag

ra
m

 il
lu

st
ra

te
s 

th
e 

sc
op

e 
of

 th
e 

Fp
M

L
 5

 s
pe

ci
fi

ca
ti

on
 in

 r
el

at
io

n 
to

 v
ar

io
us

 d
im

en
si

on
s 

su
ch

 a
s 

te
ch

no
lo

gy
, 

in
du

st
ry

 c
ov

er
ag

e,
 g

ov
er

ni
ng

 b
od

ie
s,

 a
nd

 im
pl

em
en

ta
ti

on
 a

ct
iv

it
ie

s.
 

  

 

 
 



 

 
 
 
 
 
 
 
 
 
 
 

FpML® 5 User Guide 
2012 Edition 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



FpML 5 User Guide 2012 Edition 
 

  ii

 
 
 
 
 
 
 
 
 
 
 
 

 
Published June 2012 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2012 by 
 

INTERNATIONAL SWAPS AND DERIVATIVES ASSOCIATION, INC. 
360 Madison Avenue, 16th floor 

New York, NY 10017 
 
 

FpML® is a registered trademark of the International Swaps and Derivatives Association, Inc. 
ISDA® is a registered trademark of the International Swaps and Derivatives Association, Inc. 



FpML 5 User Guide 2012 Edition 
 

  iii

Contents 
 

1.  Introduction ............................................................................................................................. 1 
1.1.  History of FpML .................................................................................................. 1 
1.2.  About this User Guide .......................................................................................... 1 

1.2.1.  Purpose ....................................................................................................... 1 
1.2.2.  Audience ..................................................................................................... 2 
1.2.3.  Content Overview ....................................................................................... 2 
1.2.4.  Applicability ............................................................................................... 2 
1.2.1.  Materials for Download .............................................................................. 3 

1.3.  Drivers for FpML 5 .............................................................................................. 3 
1.4.  FpML Documentation .......................................................................................... 4 
1.5.  Related Resources ................................................................................................ 4 

1.5.1.  XML Documentation .................................................................................. 5 
1.5.2.  XML Terminology and Tools ..................................................................... 5 
1.5.3.  Web-based Resources ................................................................................. 6 

2.  Key Changes Compared to FpML 4 ....................................................................................... 7 
2.1.  Main Functionality Changes ................................................................................. 7 
2.2.  Views .................................................................................................................... 7 
2.3.  The Use of Multiple Namespaces ......................................................................... 9 
2.4.  Multiple Root Elements ........................................................................................ 9 
2.5.  Enhanced Messaging Framework ......................................................................... 10 
2.6.  Other Improvements ............................................................................................. 11 

2.6.1.  Boolean ....................................................................................................... 11 
2.6.2.  Underlyers ................................................................................................... 11 
2.6.3.  Refactoring FX Products ............................................................................. 12 
2.6.4.  Payments ..................................................................................................... 12 
2.6.5.  Removed Deprecated Structures ................................................................. 12 
2.6.6.  Removed Contract ...................................................................................... 12 
2.6.7.  Account and Roles – Removed tradeSide ................................................... 13 
2.6.8.  Other Changes ............................................................................................. 13 

2.7.  Impact ................................................................................................................... 14 
2.7.1.  Impact of Views .......................................................................................... 14 
2.7.2.  Impact on Extensions .................................................................................. 14 
2.7.3.  Impact of Multiple Roots and Generic Processes ....................................... 14 
2.7.4.  Migrating Messages from 4.x to 5.x ........................................................... 15 

3.  How to Use FpML – Sample Applications ........................................................................... 17 
3.1.  Introduction .......................................................................................................... 17 

3.1.1.  Purpose ....................................................................................................... 17 
3.1.2.  Overview ..................................................................................................... 17 

3.2.  Straight-Through Processing (STP) Data Transfer ............................................... 18 
3.2.1.  Objective ..................................................................................................... 18 
3.2.2.  Requirements .............................................................................................. 18 
3.2.3.  Messages and Structures Used .................................................................... 18 
3.2.4.  Tools and Technology ................................................................................. 18 

3.3.  Automatic Confirmation ....................................................................................... 20 
3.3.1.  Objective ..................................................................................................... 20 
3.3.2.  Requirements .............................................................................................. 20 
3.3.3.  Messages Used ............................................................................................ 20 
3.3.4.  Customizations / Restrictions ..................................................................... 21 
3.3.5.  Validation ................................................................................................... 21 
3.3.6.  Tools and Technologies .............................................................................. 21 



FpML 5 User Guide 2012 Edition 
 

  iv

3.4.  Derivatives Clearing Organization ....................................................................... 22 
3.4.1.  Objective ..................................................................................................... 22 
3.4.2.  Requirements .............................................................................................. 22 
3.4.3.  Messages Used ............................................................................................ 22 
3.4.4.  Customizations / Restrictions ..................................................................... 23 
3.4.5.  Validation ................................................................................................... 23 
3.4.6.  Tools and Technologies .............................................................................. 23 

3.5.  Internal Trade Archive ......................................................................................... 24 
3.5.1.  Objective ..................................................................................................... 24 
3.5.2.  Structures Used ........................................................................................... 24 
3.5.3.  Tools ........................................................................................................... 24 
3.5.4.  Issues/Notes ................................................................................................ 25 

3.6.  External Trade Repository (for Regulatory Reporting) ........................................ 26 
3.6.1.  Objective ..................................................................................................... 26 
3.6.2.  Requirements .............................................................................................. 26 
3.6.3.  Views and Business Processes Used ........................................................... 26 
3.6.4.  Tools ........................................................................................................... 27 

3.7.  Intra-day Activity Reconciliation ......................................................................... 28 
3.7.1.  Objective ..................................................................................................... 28 
3.7.2.  Messages Used ............................................................................................ 28 
3.7.3.  Reconciliation Approaches ......................................................................... 28 

3.8.  Inventory Reconciliation ...................................................................................... 29 
3.8.1.  Objective ..................................................................................................... 29 
3.8.2.  Messages/Structures Used .......................................................................... 29 
3.8.3.  Matching/Reconciliation Approaches ......................................................... 29 

3.9.  Bulk Reporting Applications ................................................................................ 30 
3.9.1.  Objective ..................................................................................................... 30 
3.9.2.  Messages/Structures Used .......................................................................... 30 
3.9.3.  Tools and Technologies .............................................................................. 30 

4.  How to Write FpML – Examples .......................................................................................... 33 
4.1.  Introduction .......................................................................................................... 33 
4.2.  Basic Example: Forward Payment ....................................................................... 33 

4.2.1.  Introduction ................................................................................................. 33 
4.2.2.  Required Data Attributes ............................................................................ 33 
4.2.3.  Developing the FpML ................................................................................. 34 

4.3.  IR Swap Confirmation Message Example ............................................................ 39 
4.3.1.  Introduction ................................................................................................. 39 
4.3.2.  Required Data Attributes ............................................................................ 39 
4.3.3.  Developing the FpML ................................................................................. 40 

4.4.  Public Reporting of a Commodity Swap .............................................................. 49 
4.4.1.  Introduction ................................................................................................. 49 
4.4.2.  Required Data Attributes ............................................................................ 49 
4.4.3.  Developing the FpML ................................................................................. 49 

4.5.  Non-public Reporting of an Equity Option .......................................................... 52 
4.5.1.  Introduction ................................................................................................. 52 
4.5.2.  Required Data Attributes ............................................................................ 52 
4.5.3.  Developing the FpML ................................................................................. 52 

4.6.  Clearing of an FX forward ................................................................................... 55 
4.6.1.  Introduction ................................................................................................. 55 
4.6.2.  Required Data Attributes ............................................................................ 55 
4.6.3.  Developing the FpML ................................................................................. 55 

 



FpML 5 User Guide 2012 Edition 
 

  v

5.  The Organization of FpML ................................................................................................... 57 
5.1.  Introduction .......................................................................................................... 57 

5.1.1.  Purpose ....................................................................................................... 57 
5.1.2.  Overview ..................................................................................................... 57 

5.2.  Architecture .......................................................................................................... 57 
5.2.1.  Architecture Principles ................................................................................ 57 
5.2.2.  Schema and Instance Documents ................................................................ 58 
5.2.3.  Architectural Changes Between Versions ................................................... 61 

5.3.  Document / Messaging Framework ...................................................................... 63 
5.3.1.  Sample Message Flows ............................................................................... 63 
5.3.2.  Generic Messaging / Multi-Event Workflows ............................................ 65 
5.3.3.  Views .......................................................................................................... 65 
5.3.4.  More Information ........................................................................................ 65 

5.4.  Other Top Level Structures .................................................................................. 66 
5.4.1.  Party ............................................................................................................ 66 
5.4.2.  Trade ........................................................................................................... 66 
5.4.3.  Trade Header ............................................................................................... 67 
5.4.4.  Portfolio ...................................................................................................... 68 

5.5.  Building Block Components ................................................................................ 68 
5.5.1.  Currency and Location Related Components ............................................. 69 
5.5.2.  Date-related Components ............................................................................ 70 
5.5.3.  Payment ...................................................................................................... 72 

5.6.  FpML Validation Framework ............................................................................... 72 
5.6.1.  What Does Validation Add? ....................................................................... 72 
5.6.2.  What Information Does Validation Provide? .............................................. 74 
5.6.3.  How Does Validation Work Together with the Specification? ................... 76 

6.  The FpML Product Framework ............................................................................................ 77 
6.1.  Introduction .......................................................................................................... 77 
6.2.  Derivative Products .............................................................................................. 77 

6.2.1.  Product Substitution Framework ................................................................ 77 
6.2.2.  Product Summary ....................................................................................... 79 
6.2.3.  Adding New Products ................................................................................. 80 
6.2.4.  ISDA Product Taxonomy ........................................................................... 80 

6.3.  Underlying Assets ................................................................................................ 81 
6.3.1.  Usage .......................................................................................................... 81 
6.3.2.  Underlying Asset Substitution Framework ................................................. 81 
6.3.3.  Summary of Underlying Assets .................................................................. 82 

7.  The FpML Messaging Framework ....................................................................................... 83 
7.1.  Messages .............................................................................................................. 83 

7.1.2.  Message Naming Convention / Patterns ..................................................... 84 
7.1.3.  Message Correlation ................................................................................... 85 

7.2.  Business Processes ............................................................................................... 85 
7.3.  Views .................................................................................................................... 86 
7.4.  The Use of Multiple Namespaces ......................................................................... 87 
7.5.  Multiple Root Elements ........................................................................................ 87 
7.6.  Generic Messaging / Multi-Event Workflows ...................................................... 88 
7.7.  Generic (Multi-Event) Flows ............................................................................... 89 
7.8.  Pre-Trade .............................................................................................................. 89 
7.9.  Confirmation ........................................................................................................ 89 
7.10.  Reporting .............................................................................................................. 90 
7.11.  Recordkeeping ...................................................................................................... 91 
7.12.  Transparency ........................................................................................................ 91 



FpML 5 User Guide 2012 Edition 
 

  vi

7.13.  Shared Messages .................................................................................................. 91 
7.14.  Collateral Management ........................................................................................ 92 
7.15.  Loan Syndication .................................................................................................. 92 

8.  Customizing FpML ............................................................................................................... 93 
8.1.  Introduction .......................................................................................................... 93 

8.1.1.  Purpose of the Section ................................................................................ 93 
8.1.2.  Overview ..................................................................................................... 93 

8.2.  Wrapping .............................................................................................................. 93 
8.2.1.  Explanation ................................................................................................. 93 
8.2.2.  Advantages and Disadvantages ................................................................... 94 

8.3.  Extending Type Content ....................................................................................... 94 
8.3.1.  Example ...................................................................................................... 95 
8.3.2.  Advantages and Disadvantages ................................................................... 96 

8.4.  Restricting Type Content ...................................................................................... 96 
8.5.  Extending Product Coverage ................................................................................ 97 

8.5.1.  Create a New Type ..................................................................................... 97 
8.6.  Extending an Existing Product ............................................................................. 98 
8.7.  Extending Messages ............................................................................................. 99 
8.8.  Versioning and Version Migration ....................................................................... 100 

 



FpML 5 User Guide 2012 Edition 
 

  vii

  

Copyright Notice 
 
This ISDA document is protected by Copyright Law. No electronic or hard copy 
document may be reproduced, photocopied or distributed electronically. Contact 
the ISDA Legal Department at isda@isda.org or +1-212-901-6000 for more 
information. 
 
Additional copies of this user guide may be obtained from the ISDA website 
www.isda.org, under the “Bookstore”. 
  



FpML 5 User Guide 2012 Edition 
 

  viii

 
 
 
 
 
 
 



1. Introduction 

1.1. History of FpML 
From the early 1980s when the interest rate swaps market began developing, the privately 
negotiated derivatives have grown tremendously in volume. According to the report on 
Derivatives Market Activity from the Bank for International Settlements, the notional principal 
outstanding of swaps and other over-the-counter (OTC) derivatives, stood at $95 trillion in 
2000, doubled by the end of 2003 ($197 trillion), and reached $708 trillion in June 2011. This 
corresponds to a 20% annualized growth rate over this eleven-year period. 
 
To lower the cost of processing derivatives and thereby increase the profitability of the 
business, JP Morgan, in 1997, established a research project to develop the methodology by 
which these instruments can be traded using e-commerce technologies. 
PricewaterhouseCoopers was brought on board as a resource, and in 1999 the organizations 
announced a draft standard for interest rate swaps. At that time, other industry firms were 
contacted and an independent organization – FpML.org – was formed to develop and promote 
the Financial products Markup Language (FpML) as an XML-based “lingua franca” for 
derivatives trading. 
 
The FpML standard is freely licensed and is intended to automate the flow of information 
between derivatives participants, independent of the underlying software or hardware 
infrastructure, supporting activities related to these transactions. 
 
On November 14, 2001 ISDA and FpML.org announced their intention to integrate the 
development process of the FpML standard into the ISDA organizational structure. This 
combined the organizational strengths of ISDA with FpML’s technology base and allowed the 
FpML standard to be leveraged using the membership base and experience ISDA has built up 
since its formation in the mid 80s. The change is an indication of the increased importance of 
operations, automation and straight-through processing for the ISDA membership. 
 
Expansion of the FpML standard to new products (e.g., correlation swaps, commodities) and 
business areas (e.g., bulk position reporting, incremental regulatory reporting, clearing, 
collateral management, syndicated loan) and adoption by new users has continued under 
ISDA’s sponsorship. Because of the rapid expansion of the standard and applications of the 
standard, and because of the increasing number of newcomers to FpML, there has been a 
growing need to provide introductory material to help users new to FpML understand how to 
use the standard. This user guide to FpML is intended to address this need.   In particular, this 
edition covers regulatory reporting and clearing functions that are needed to be implemented 
under various regulatory mandates. 
 

1.2. About this User Guide 

1.2.1. Purpose 
The user guide to FpML provides guidance to implementers about how FpML may be used by 
derivative market participants. It suggests applications for FpML, describes at a high level how 
to write FpML, and provides guidance on related topics. 
 



FpML 5 User Guide 2012 Edition 
 

  2

The user guide is complementary to the FpML standard specification, and is not a replacement 
for that specification. It describes specific instances and examples of using FpML, where the 
FpML specification provides a comprehensive reference and full schema description. In case of 
any discrepancy between the documents, the FpML standard specification shall be regarded as 
correct. 

1.2.2. Audience 
This user guide is intended to be used primarily by technologists with some exposure to XML 
and some familiarity with OTC derivatives. Following are some suggestions on sections of 
particular interest to people in different roles: 

 Technology managers: Section 3, Application Examples would be particularly relevant. 
Section 8, Customizing FpML may also be relevant. 

 Business analysts/developers: Section 4, Writing FpML should be useful as an 
introduction to how FpML looks. 

 Technical architects/standards developers: All sections, with a particular emphasis on 
sections 5 to 8. 

1.2.3. Content Overview 
The user guide is organized as follows: 
 Section  1 provides general information and how to best approach this user guide. 
 Section 2 contains information for people and firms looking to upgrade their 

implementation from FpML 4. 
 Section 3 contains examples of different applications that might use FpML, with a 

discussion about which features of FpML could be used. For each potential application, 
there are references to particularly relevant parts of the user guide and the FpML 
Specification, to help users quickly find related information. 

 Section 4 provides some examples of how to write simple FpML instance documents, to 
illustrate in basic terms how FpML is constructed. 

 Section 5 highlights some of FpML’s key architectural underpinnings, and describes some 
cross-product components in FpML. 

 Section 6 briefly describes how FpML instruments are specified, and describes the 
instrument extension mechanism. 

 Section 7 covers support for business processes in FpML 5. 
 Section 8 introduces how to customize FpML for business-specific requirements. 

1.2.4. Applicability 
The FpML user guide has been developed for FpML 5. In most cases, concepts, applications, 
and examples described in the user guide could be supported by previous versions of FpML. 
The examples were developed based on version 5.3; some examples may work with earlier 4.x 
versions with modifications. 
 

 

 
FpML 4 

 

A separate user guide (FpML 4 User Guide 2010 Edition) covers the latest 
changes introduced in version 4. An electronic version of the publication is 
available for download from the ISDA Bookstore (www.isda.org). 
 



FpML 5 User Guide 2012 Edition 
 

  3

1.2.1. Materials for Download 
 

 
 

The examples developed in this user guide and other materials are available 
for download at: 
http://www.fpml.org/userguide/fpml5ug2012k7 
 

 

1.3.  Drivers for FpML 5 
 
“The FpML organization has been looking at ways of improving the specification for some 
time. One of the things we have always encouraged within FpML is people sending us feedback 
on their implementations. Over time we have received a number of comments on the FpML 
issues list identifying features of the grammar which either made it harder to use or which 
people felt could do with some redesign. 
 
A few years ago, we started the process of reviewing FpML, looking at it from the 
architectural, product, business process and messaging standpoints to see if we could come up 
with ways to address these issues. We came up with pragmatic solutions to some them. These 
solutions modify FpML slightly; new features have been introduced as well as some 
incompatibilities, but overall version 5 maintains much of the structure and conventions of 
previous versions. 

 
We haven’t made needless changes to the definitions of products; we haven’t made FpML look 
considerably different from the way it does in FpML 4, but we believe the changes that we’ve 
introduced increase the consistency in the design of FpML. The way we go about defining 
products and messages is considerably improved. Within the business process protocols, where 
previously there were a few gaps and a few missing messages, we believe that the new pattern-
based approach enables us to produce grammars in which there are no missing messages and 
where there’s a greater consistency between the message sets themselves (e.g., having learnt 
one, you are able to transfer knowledge on to the others). 

 
Collectively, the changes made in version 5 prepare FpML for the next generation of 
challenges, for example, providing the new messages needed for the derivatives market to 
address regulatory changes.”  

Andrew Jacobs, chair of the FpML Architecture Working Group 
 
FpML 5 introduces a number of technical changes. It eliminates the use of some complex XML 
features that people found confusing. Documents are simpler in their structure. Techniques and 
features were introduced that enable documents to have greater longevity. For example, with 
the new schemas it is possible to process documents against future compatible versions of the 
schema. This was not possible before because they were tightly bound to a specific schema. 
This feature is useful in the task of migrating across time or supporting multiple versions 
simultaneously. 
 
Some of the technical changes introduced in version 5, such as the use of multiple root 
elements and namespaces, make FpML more aligned with existing financial standards such as 
ISO 20022 and FIXML. Convergence between financial standards will continue being a key 
factor in driving future development of FpML. 
 



FpML 5 User Guide 2012 Edition 
 

  4

The FpML Standard follows a strict set of change control guidelines that dictate the types of 
changes that are allowed in a particular version. 

 Minor releases (e.g., FpML 4.8 and 4.9) are intended to be backward compatible and 
cannot include major changes (e.g., we cannot remove elements, we cannot change 
names). Architectural changes are limited because of the backward compatibility 
requirement. 

 More significant changes are allowed in major releases (e.g., FpML 4.0 and 5.0). In a 
major version, functionally cannot be removed. From this perspective functionality is a 
superset of what was there before. However, introducing backward incompatible 
changes is permissible. That is the reason why the architectural and technical changes 
discussed above were introduced in FpML 5.0 as opposed to a minor 4.x release.  

 
Section 2 contains a detailed overview of the changes that have been highlighted in this 
section. 

1.4. FpML Documentation 
All published FpML documents can be found on the FpML website (http://www.fpml.org). 
 
FpML Specifications (http://www.fpml.org/spec) 

 The FpML specifications section contains all the versions of the FpML Specification, 
including Recommendations and Working Drafts.  

 Documentation, schemas and examples are available for download.  Note that for 
version 5.x, there are multiple sets of these for each version, one for each supported 
view. 

 As of this writing, the most recent version FpML Recommendation is version 5.3. The 
examples in this user guide were developed using FpML 5.3. Version 5.3 introduces 
important changes that are mentioned in the user guide, where relevant.  

 The FpML Specifications section requires a simple, free, one-time registration that 
grants full access to all published versions of FpML.  

 The section also contains the FpML Architecture Specification, the normative 
reference for the architectural rules under which FpML 5 is developed. The latest 
version of the architecture is 3.0. 

 
FpML Documents (http://www.fpml.org/documents) 

 The FpML Documents section contains technical papers and proposals (e.g., 
validation, versioning, messaging, extensions) 

 
Other information that can be found on the FpML website includes general background 
information on FpML schema, events, tools and consulting services. In addition, one can sign 
up for FpML announcements, find further information about the FpML Working Groups 
(http://www.fpml.org/wgroup), or access the online FpML Subversion Source libraries. 

1.5. Related Resources 
In addition to the ISDA documentation, there are a variety of other resources that implementers 
can use to learn about FpML and related technologies. Some of these are described below. 



FpML 5 User Guide 2012 Edition 
 

  5

1.5.1. XML Documentation 
FpML is based on XML, the Extensible Markup Language. The FpML Specification and to a 
lesser degree the user guide assume familiarity with XML and with XML schema. The 
following are references to learn more about XML and XML Schema: 
 
 XML 

 The XML specification: http://w3.org/XML/Core/#Publications 
 XML tutorial: http://www.w3schools.com/xml/default.asp  
 The Guide to the XML Galaxy: http://www.zvon.org/comp/r/tut-XML.html#  
 An index of XML publications: http://www.oasis-open.org/cover/xml.html 
 Brief article by an XML expert on how XML works: 

http://www.xml.com/pub/a/w3j/s3.walsh.html 
 Two-page quick reference guide to XML (assumes some familiarity with XML): 

http://www.mulberrytech.com/quickref/XMLquickref.pdf 
 XML Schema 

 The W3C XML Schema specification: http://w3.org/XML/Schema. 
 A tutorial: http://www.xml.com/pub/a/2000/11/29/schemas/part1.html 
 Links to XML Schema quick reference guides: http://www.xml.dvint.com/  

1.5.2. XML Terminology and Tools 
Following are some common terms and tools used when working with XML: 

 Parser: A parser is a software tool used to break XML documents into pieces that are 
convenient to be processed by a computer program. Most XML parsers use one (or 
both) of the following types of interfaces: 

o DOM (Document Object Model): DOM parsers convert the XML document 
into a tree representation that is convenient for computer programs to process. 

o SAX (Simple API for XML): SAX parsers convert the XML document into a 
sequence of “events” representing the different components in the document. 
SAX parsers allow more efficient programs to be written, especially for 
processing large documents, but are less convenient than DOM parsers. 

Common XML parser implementations include Apache Xerces 
(http://www.apache.org) for Java, or C++, or Microsoft MSXML ActiveX component.  

 Well-formedness: An XML document that follows all of the standard XML rules is 
described as “well-formed”. An XML parser can parse a well-formed document. An 
XML parser will report a parsing error if the input document is not well-formed. 

 Validating Parser: A parser that can validate an XML document against a schema or 
DTD. Most modern XML parsers can validate, although validation is not used for 
some performance-intensive applications. 

 XSLT (Extensible Style Language - Transformations): A template-driven (pattern 
matching) language for processing XML. XSLT is particularly strong at reformatting 
XML, for example into HTML. See http://www.w3.org/Style/XSL/ for more on the 
XSLT specification. Common implementations of XSLT include Microsoft MSXSL , 
Apache Xalan (http://xml.apache.org/xalan-j/), Saxon (http://saxon.sourceforge.net/). 

 XML Schema: An expressive, XML-based definition of an XML document’s 
vocabulary and syntax. FpML uses W3C XML schema to define its structure. 

 DTD (Document Type Definition): An older, more compact but less expressive 
(compared to XML Schema) way of defining an XML document’s vocabulary and 
syntax. Versions of FpML prior to version 4 used DTDs. 



FpML 5 User Guide 2012 Edition 
 

  6

 Instance Document: An XML document that contains business data expressed using 
the syntax rules defined by either a DTD or XML Schema. 

 Namespace: An identified collection of XML component names. A namespace is 
typically defined by a schema. Namespaces are used to allow an instance document to 
specify which vocabulary is meant when a particular name is used. 

1.5.3. Web-based Resources 
There are a variety of resources on the web for implementers interested in learning more about 
FpML and FpML applications. By using a web search tool to look for FpML and related terms, 
you can find up to date information about solutions related to your application needs. In 
particular, for most of the applications described in section 3 there are web-based resources. 
Some of the keywords that can be searched, in addition to “FpML”, include “confirmation 
service,” “matching messages” and “reconciliation”. 
The FpML website (http://www.fpml.org) serves as the main source for FpML related 
information and applications. Along with all published documentation and the specification 
itself, comprehensive listings of participating organizations and vendors supporting FpML 
products are available.  



FpML 5 User Guide 2012 Edition 
 

  7

2. Key Changes Compared to FpML 4 
 
This section contains information for implementers upgrading from FpML 4. A highlight of the 
architectural and functionality changes introduced in FpML 5 was discussed previously in 
section 1.3. In the below section, these changes are discussed in detail. 
 
The Architecture Specification version 3.0, the normative reference for the architectural rules 
under which FpML 5 is developed, is available on the website (http://www.fpml.org/spec). 

2.1. Main Functionality Changes 
FpML 5.x introduces support for a number of new applications of FpML.  Some of the key 
changes include: 

 Support for bulk reporting.  FpML now has the ability to represent bulk reports in 
XML with multiple trades, where for each trade only the desired information needs to 
be provided. 

 Support for real-time reporting to industry trade repositories (in 5.3 and beyond) 
 Support for clearing, including related processes such as approvals (consent 

negotiation), better support for allocations, netting, etc. 
 
The need to support these types of processes, and issues with FpML version 4.x, caused 
FpML’s designers to implement a number of architectural changes compared to version 4.x.  
The remainder of this section discusses these architectural changes and some other minor 
changes. 

2.2. Views 
FpML 4.x and earlier versions have a single representation for each product. The product 
representation was primarily designed from a confirmation perspective (i.e., complete details 
and a precise description). However, in certain instances, not all the details are known or 
needed (e.g., pretrade negotiation, summary reporting) making most/all elements optional 
would make the confirmation too loose. One potential solution is to make additional elements 
optional; however this could make the confirmation too loose. The use of “views” with 
different amounts of required detail is another potential solution, and is the one chosen by 
FpML. 
 
The concept of “views” has been introduced in version 5 and is intended to make FpML easier 
to use in a number of different business contexts and for different purposes.  
 
FpML maintains a single master schema from which multiple views can be generated. The 
following diagram illustrates how the different versions of the schema, or views, are generated 
from the master schema using a conversion script. The master schema contains annotations, 
with view-specific instructions (e.g., make this element optional in view X, put this element 
only in view Y) 
 



FpML 5 User Guide 2012 Edition 
 

  8

 
 

 In most cases users of the FpML specifications will use a view specific schema, not the 
master schema.  
A view is a version of the schema focused on a particular business area or application 
such as reporting a confirmation.  The product representation in each view can be 
different. 

 In versions 5.0-5.2 there are two views: 
o The “Confirmation” view: this view is very similar to the FpML 

representation FpML 4. Trade by trade, confirmation, STP, any sort of 
messaging apps where you are working on individual trades and need to pull a 
representation of a trade.  
The “Reporting” view: is a looser version of the schema, using the same 
structure, the same element names but where many elements are mandatory in 
confirmation view, almost all elements are  optional in reporting view. This 
allows institutions to pick only the fields that need to be represented as part of 
trade reporting.  

 In version 5.3 two additional views are added to address regulatory reporting 
requirements. 

o The “Transparency” view is intended for real-time public reporting, at the 
time of writing the user guide addresses CFTC rules in 17 CFR Part 43. 
Additional regulatory reporting requirements (e.g. from European regulators) 
will be addressed if and when they become available.  The view includes a 
simplified product model without party references, in addition to messages to 
support reporting from market participants and execution facilities into Swap 
Data Repositories (SDRs).  

o The “Recordkeeping” view is intended for non-public reporting into SDRs, as 
required by the CFTC rules in 17 CFR Part 45, and is intended to support 
additional regulatory requirements in the future.  It includes a product model 
that is a little more flexible than Confirmation view, but which supports all of 
the fields in Confirmation view. 

 All the views also include the “standard” product (standardProduct), which allows 
reporting on trades that can be fully represented with a product ID (plus size and price 
information), and a “generic” product (genericProduct), for reporting on trades that 
cannot otherwise be reported on in the FpML schema. 



FpML 5 User Guide 2012 Edition 
 

  9

2.3. The Use of Multiple Namespaces 
 In FpML 4.x and earlier, each FpML version had its unique namespace. For example: 

 
FpML 4.7 REC http://www.fpml.org/2009/FpML-4-7 
FpML 4.8 REC http://www.fpml.org/2010/FpML-4-8 
FpML 4.9 REC http://www.fpml.org/2010/FpML-4-9 
 

 The FpML 5.x grammar is distributed as multiple XML schemas, each of which is 
specialized to suit a particular set of related business processes. This allows product and 
other business object representations to be adjusted to each usage (e.g. strict for 
confirmation, looser for reporting). Each view has a different namespace to distinguish 
between the different types of applications. 
 
http://www.fpml.org/FpML-5/confirmation  (confirmation view) 
http://www.fpml.org/FpML-5/reporting    (reporting view) 
http://www.fpml.org/FpML-5/recordkeeping  (recordkeeping view) 
http://www.fpml.org/FpML-5/transparency  (transparency view) 
 

 Starting in version 5.0, minor FpML versions share the same namespace. For example, the 
namespace for the confirmation view is the same for FpML 5.0, 5.1, 5.2, and 5.3. 
 
http://www.fpml.org/FpML-5/confirmation  (shared namespace across minor versions) 
 
Multiple namespaces/forward compatibility enables documents to have greater longevity. 
For example, with the new 5.x schemas it is possible to process documents against future 
compatible versions of the schema. This wasn’t possible before because documents were 
tightly bound to a specific schema (e.g., only version 4.9 is tied to the namespace 
http://www.fpml.org/2010/FpML-4-9). This feature is useful in the task of migrating 
towards future versions or supporting multiple versions simultaneously. 

2.4. Multiple Root Elements 

Earlier versions of FpML used <FpML> as the root of all FpML documents. FpML 5.x now 

uses different element names to distinguish between message types. 

 The removal of common FpML root element. 

Type substitution on the root element (xsi:type) is no longer used to select the 

message type and its associated content model. The <FpML> element has been 

removed from the schema. The use of multiple root elements is easier to 

understand than type substitution at the root level and certain tools also had 

problems processing xsi:type. 

<requestExecution>, <executionAdvice>, <clearingStatus>, <positionReport> are 

just a few of the many root elements available in FpML 5.x. See the FpML 

Messaging Framework insert (folded at the end of this book) for a complete list 

of root element names available. 



FpML 5 User Guide 2012 Edition 
 

  10

 Version 5 uses the name of the root element name to express message type. 

In FpML 5.x every message has been given its own global element which can 

appear as a document root element. Business process related messages are 

typically only defined in one of the FpML process namespaces but some common 

messages used for error handling are defined in multiple namespaces (e.g. 

messageRejected). 

 The FpML 'version' attribute has been renamed to 'fpmlVersion'. 

To make it easier to search for the start of FpML content within an encapsulating 

XML document, the version attribute has been renamed to make it more 

distinctive. 

2.5. Enhanced Messaging Framework 
FpML 5 introduces the idea of Generic Business Processes to address limitations in the 
version 4 framework. This new framework: 

 Consistently implements a set of general principles to make it easier to use the 

messages to implement real business processes 

 Adjusts the representation of parties, accounts, and roles to clarify the purpose of 

messages and the roles of the parties within a message. 

Following are some of the issues in the FpML 4 messaging framework that the version 5 

framework seeks to correct: 

 Incomplete message set – in many cases not all messages required to implement a 

business process are defined in the FpML 4 message set. In particular, many 

requests lack acknowledgements, exception responses, correction capabilities, 

and in some cases normal responses are missing. Many generic business 

processes (such as confirmation) have different levels of completeness depending 

on the specific event that is being covered. 

 Inconsistent message correlation – different implementations use different 

features of the FpML 4 framework to link successive messages together, making 

them incompatible. 

 Unclear processes – it is not always clear how the version 4 messages are to be 

combined together to fully implement a business process. For example, which 

message should be used to acknowledge or respond to a request isn’t always 

defined. While this could in theory be addressed through documentation, because 

the message set is incomplete, this is difficult to do. 



FpML 5 User Guide 2012 Edition 
 

  11

In version 4.x, there were a set of messages for each business process (i.e., distinct messages 
are necessary to request a trade increase, a trade amendment, a trade amendment). 
 
In FpML 5, one set of messages (e.g., execution, confirmation, allocation) can be reused, for 
many trading events (different payloads) using the same flow of messages. The messages can 
be applied in a number of different contexts. For example, the same <requestExecution> 
message can be used to execute an increase, an amendment, a termination, a novation, a trade. 
 
Using generic business processes offers a number of important benefits: 

 Implementers can learn a set of messages once and reuse them in different contexts 
(using different payloads) 

 Generic processes improve consistency across post-trade events and make it easier to 
ensure all necessary messages are present. 

 It greatly reduces the number of messages required to provide full coverage, simplifies 
the structure of messages and makes it easier to use FpML messaging. 

Messaging Correlation 

Message correlation is essential to link successive messages together. As noted earlier, there 

were issues with inconsistent message correlation in version 4.x. In FpML 5.x, there is a single, 

well-defined way to link successive messages (such as corrections or retractions of requests or 

notifications). Successive messages are “correlated” (linked together) using a new, explicit 

correlationId element. The correlation ID is assigned by the initiator. Subsequent responses use 

the correlation ID to link back to the original request. 

2.6. Other Improvements 
In addition to the major architectural changes outlined above, there are a number of long 
overdue improvements which make the standard more consistent and easier to use. 

2.6.1. Boolean 
In earlier versions of FpML (mostly CDS), booleans were often represented by the presence or 
absence of an optional empty element. This approach was ambiguous as it conflicted with 
short/long forms of the products. In version 5.x the use of optional empty element as synonym 
for Boolean has been eliminated and replaced by xsd:Boolean type. 
 

2.6.2. Underlyers 
Some underlyers have been refactored for consistency. Bond and Index are now correctly 
derived from UnderlyingAsset (instead of ExchangeTraded type). A new curveInstrument 
substitution group has been created for Deposit, FxRateAsset, RateIndex, 
SimpleCreditDefaultSwap, SimpleFra, SimpleIRSwap. 
 
See the FpML 5 Underlying Assets table at the end of this user guide, and also on page 82, for 
the full list of underlyers. 



FpML 5 User Guide 2012 Edition 
 

  12

2.6.3. Refactoring FX Products 
FX coverage has been refactored and expanded to make it more consistent with other FpML 
product representations and to facilitate further development. As a result of this work the 
following original 4.x FX model’s issues were addressed: 

 A set of reusable components that facilitate product development were defined. 

Existing and future FX products can leverage these building blocks to ensure the 

FX model is coherent and easy to maintain, as per FpML best practices  

 The existing coverage was extended to include Dual Currency Deposits. 

 Rationalized the models' constraints (Use of grammar to bring related data 

together. Better use of XML schema to simplify the validation rules.) 

Since FpML 5.1 Recommendation, the following FX products are covered: 

 Basic FX Products  

o FX Spot and FX Forward (including non-deliverable settlements, or 

NDFs) 

o FX Swap 

 Simple FX Option Products (including, features, cash and physical settlement)  

o FX options  

 European and American 

 Averaging 

 Barriers 

o Digital Options  

 Option Strategies (multiple simple options) 

In addition, support for the following money market instrument is also provided: 

 Term Deposits (including features)  

o Money Market Deposits 

o Dual Currency 

2.6.4. Payments 
Payment and premium structures have been standardized based on SimplePayment type. 
Settlement information was removed from payments and products. 

2.6.5. Removed Deprecated Structures 
Deprecated structures which had to be maintained between minor 4.x versions for backward 
compatibility reasons have been removed in FpML 5. 

2.6.6. Removed Contract 
 



FpML 5 User Guide 2012 Edition 
 

  13

In FpML 4.2, support was added for a set of messages intended for communication between 
investment managers and custodians via a ‘Closed User Group’ on the SWIFT Network. 

Originally the CUG notification messages where based on the standard FpML ‘trade’ structure 
but in 2006 a late change to the schema added a new concept, a ‘contract’, into the model and 
the CUG messages were updated to make use of it while the rest of the schema remained 
‘trade’ based. 

Since 4.2, FpML has had two structures -trade and contract- that basically describe the same 
information but where each is tied to a specific set of messages. This change has created an 
inconsistency within the model. Contract has been removed in 5.x. 
 
The motivation for introducing ‘contract’ was “to differentiate more clearly between the 
trading event itself and the resulting contract. A processing application must in practice 
assume a ‘trade’ is a ‘contract’ until it discovers that it isn’t because of the operations applied 
to it. So differentiating between ‘trade’ and ‘contract’ turned out to be neither practical nor 
useful. 

A study of ISDA documentation has also shown that the term ‘transaction’ is more commonly 
used to in legal documents and across the financial markets as a whole the words ‘trade’, 
‘deal’, ‘contract’ and ‘transaction’ are often used interchangeably. 

2.6.7. Account and Roles – Removed tradeSide 

The new messaging framework adjusts the representation of parties, accounts, and roles to 

clarify the purpose of messages and the roles of the parties within a message. 

 Removed TradeSide - The 4.x tradeSide structure has been replaced by a simpler 

implementation adding a new relatedParty element to the partyTradeInformation. The 

role element within the relatedParty defines the list of roles as code list. This allows 

easier customization of the roles than using the tradeSide structure. 

o The buyer/seller party references now include optional account references 

(buyerAccountReference and sellerAccountReference) 

o Similarly, the payer/receiver model includes optional account references 

(payerAccountReference and receiverAccountReference) 

 
 Parties Account / Roles - The existing representation for parties, accounts and roles 

version 4 was complicated and difficult to work with.  In order to simplify the 
structure and make the relationships clearer the Account structure was moved outside 
of Party and given a mandatory reference to its beneficiary and an optional reference to 
its servicer 

o ServicingParty – party that services/supports the account  
o accountBeneficiary – owner of the account/funds 

2.6.8. Other Changes 

There were a few other changes to product representations including adjusted dates and 

miscellaneous product refactoring. 



FpML 5 User Guide 2012 Edition 
 

  14

2.7. Impact 
The architectural changes introduced in version 5 will have an impact on the way users need to 
approach the FpML standard from a planning and implementation perspective. Here are some 
of the key areas users should be aware of. 

2.7.1. Impact of Views 
 FpML users must decide which view (schema) to use for a given application/system. 

Business processes are generally contained in a single view. Often the view can be 
selected based on the types of messages that the user wants to support. 

 Once the view is selected, instance documents should be closely compatible with 
previous FpML versions 

 Choosing a looser view (e.g. reporting) allows more flexibility regarding the data that 
can be included in an instance document, however, this comes at the expense of the 
effectiveness of schema validation. 

2.7.2. Impact on Extensions 
Extensions to the FpML schema will be impacted by the introduction of views.  

 Extensions will need to import the appropriate views (e.g. <xsd:import 
namespace=“http://www.fpml.org/FpML-5/confirmation” …>.  

 Extensions applicable to multiple views will need to be duplicated 

2.7.3. Impact of Multiple Roots and Generic Processes 
Using generic processes offers many benefits as described in section 2.4. This comes with 

a drawback as systems need to look inside messages to see what type of payload is carried by 
the message. As a result, it may make it slightly harder to route or report on messages by event 
type. 

You cannot look for the <FpML> element anymore. Instead, you can look for an element 
containing the fpmlVersion attribute, or a root element in an FpML namespace. 
  



FpML 5 User Guide 2012 Edition 
 

  15

2.7.4. Migrating Messages from 4.x to 5.x 
Firms that have implemented FpML 4.x messages internally or between trading partners 

can benefit from the improved messaging framework in version 5. The changes between the 
two versions are significant. To help the migration process, a mapping table showing the 
relationship between 4.x and 5.x messages is available for download at 
http://www.fpml.org/documents/FpML-message-mapping-4x-vs-5x.xls. 
 
The following diagram illustrates a few rows of the mapping table. An implementation using a 
requestAmendmentConfirmation message in FpML 4.9, for example, should instead use the 
requestConfirmation message available in the confirmation view of FpML 5. This 
requestConfirmation message would carry an amendment business event payload. 
 

 
  



FpML 5 User Guide 2012 Edition 
 

  16

  



FpML 5 User Guide 2012 Edition 
 

  17

3. How to Use FpML – Sample Applications 

3.1. Introduction 

3.1.1. Purpose  
This section provides examples of generic types of applications that users may wish to 
implement using FpML. All of these applications are known to have been implemented in 
some form, and many have been implemented by a number of firms. For each application, 
there are some suggestions about which FpML messages or structures to use, as well as a brief 
discussion of issues the implementer may face and resources for addressing them. 

3.1.2. Overview 
The example applications covered in this section include: 

 A straight-through-processing (STP) data feed from a front office system to a 
processing system. 

 A multilateral confirmation service. 
 A central counterparty derivatives clearing organization. 
 An internal trade repository/archive. 
 An external trade archive/data repository to support regulatory reporting. 
 Activity reconciliation between related systems/parties. 
 Position reconciliation between related systems/parties. 
 Bulk reporting applications. 



FpML 5 User Guide 2012 Edition 
 

  18

3.2. Straight-Through Processing (STP) Data Transfer 

3.2.1. Objective 
A common application for FpML is to send trade information automatically from front office 
systems to downstream processing systems, to reduce re-keying efforts, error rates, and 
operational risk. 
 

 

3.2.2. Requirements 
To support the application, the following is required: 

 The ability to send new, modified, and cancelled trades from the front office to the 
processing system. 

 The ability to record trade details for a wide variety of products. 
 The ability to support internal data, such as revenue allocation information. 

3.2.3. Messages and Structures Used 
To support the workflow requirements, the FpML Execution messages can be used. 
These messages are described in Section 7. 
 
The product coverage is addressed by the FpML product model, outlined in Section 6. If 
additional products or product characteristics are required, these can be customized as 
described in Sections 6 and 8. 
 
Additional data items not covered by FpML can be covered through extensions as described in 
Section 8. 

3.2.4. Tools and Technology 
To implement this application, the following is needed: 

 The ability to produce FpML in the upstream system. This can be done in a variety of 
ways and in different technical environments. Some techniques suited for this include: 

o “Print” statements. Since XML is just text, it can be produced by most 
programming languages. 

o Constructing XML via a DOM (Document Object Model) tree. This allows the 
XML to be constructed in memory and then produced as one operation. 

o Using various FpML API frameworks, for example code generated from the 
schema. 

 The ability to transmit FpML from the upstream system to the downstream system. 
Different ways of doing this include: 

o File transfer, e.g., using shared network drives or file transfer software such as 
FTP. 

o Message oriented middleware, such as IBM Websphere MQ. 

Front Office Trade 
Capture System New & changed trades

Processing 
System 



FpML 5 User Guide 2012 Edition 
 

  19

o Direct socket connections. 
o Web services, such as SOAP over HTTP. 

 The ability to extract the business information from the FpML instance document in 
the downstream system. This is typically done in one of the following ways: 

o By “parsing” the FpML using an off the shelf XML parser, and writing custom 
code to process the data. 

o By using a data extraction or conversion program to convert the data into a 
format recognizable by the downstream system, such as a delimited file 
format. The extractors or converters can be written using technologies such as 
XSLT. 



FpML 5 User Guide 2012 Edition 
 

  20

3.3. Automatic Confirmation 

3.3.1. Objective 
To provide automatic confirmation of a trade, there are two models in general use in the 
industry: matching and affirmation. The model described here and diagrammed below is a 
confirmation matching model; some services may implement an affirmation model, in which 
one party affirms (agrees to) the other party’s trade. In the affirmation model there is only one 
representation of the trade. The FpML specifications detail messages and business process 
descriptions for both models. 
 
In this application, each party sends trade confirmation requests to the confirmation service; the 
service matches the requests and sends resulting status updates to the parties, indicating 
whether the trades have been confirmed. 
 

 

3.3.2. Requirements  
Following are the high level requirements for the application: 

 The ability for parties to request confirmations, modify the information and resubmit 
when there is a problem; and cancel confirmation requests in case of error. 

 The ability to tightly control the list of valid trades/products to reduce the probability 
of error or unintended mismatch. 

 The ability for the confirmation service to communicate the status of the confirmations 
(e.g., whether the trades match, have differences (mismatch), or where no matching 
trade is found). 

3.3.3. Messages Used 
To make requests to the confirmation service, the following FpML messages can be used: 

 Request Confirmation: Initiates a trade confirmation process 
 Request Confirmation Retracted: Stops a trade confirmation process 

 
For confirmation services to return trade statuses, the following messages can be used: 

 Confirmation Acknowledgement: Indicates receipt of a confirmation request 
 Confirmation Status: Is used to send matching results. This response message returns 

the status of an event that has been submitted for matching (e.g., Alleged, Matched, 
Mismatched, Unmatched) 

 Confirmation Agreed: Indicates a confirmation acceptance has been received from 
both sides. 

 Confirmation Disputed: Indicates that the confirmation requester doesn’t accept the 
proposed matching results. One party is disputing the trade. 

 
These messages are described in Section 7. 

Confirmation requests
Confirmation 

Service 
Confirmation Status

Confirmation requests 

Confirmation Status 

Party B Party A 



FpML 5 User Guide 2012 Edition 
 

  21

3.3.4. Customizations / Restrictions 
To restrict the range of acceptable products, and to add service-specific details, the schema can 
be customized to add fields and/or eliminate options. See Section 8 for more information on 
how to customize FpML. 

3.3.5. Validation 
To validate that the confirmation message meets basic FpML business rules and possibly 
platform-specific business rules, the FpML validation framework can be used. This allows 
specific business constraints to be enforced for all input messages. See Section 5 for more 
information. 

3.3.6. Tools and Technologies 
To implement this application, parties will need the following: 

 The ability to create the FpML, as described above in section 3.2.4. Parties need to 
ensure that the generated FpML meets the confirmation service’s specific requirements 
and constraints. 

 The ability to transmit the FpML to the confirmation service. The mechanism to do 
this will typically be defined by the service, and may include technologies such as: 

o Custom Application Programming Interfaces (APIs), typically based on 
sockets over dedicated networks 

o Message-oriented middleware on dedicated networks 
o Web services 

Services will need to create the following, among other items: 
 A message delivery infrastructure 
 A trade validation mechanism 
 A trade matching and persistence mechanism 

  



FpML 5 User Guide 2012 Edition 
 

  22

3.4. Derivatives Clearing Organization 

3.4.1. Objective 
Recent regulatory changes have increased the need for central counterparty clearing 
organizations for OTC derivative trading.  These Derivatives Clearing Organizations (DCOs) 
need a way for trades to be submitted for clearing, processes for approving clearing and 
possibly allocating trades to multiple accounts, as well as various ways to report back status, 
cleared trades, and periodic processing results, such as margin requirements.  FpML supports 
all of these interfaces. 
 

 

3.4.2. Requirements  
Following are the high level requirements for the application: 

 Provide a way for Swap Execution Facilities (SEFs), matching services, and market 
participants to submit trades for clearing. 

 Provide a way to report status on these trades. 
 Provide a way for DCOs to request approval from clearing member firms to take on 

trades. 
 Provide a way for DCOs to report that a trade has been cleared. 
 Provide a way for DCOs to report on open positions and on settlement amounts, and 

other regulator reports. 

3.4.3. Messages Used 
To make requests to the confirmation service, the following FpML business processes can be 
used: 

 
From “Confirmation” view: 

 clearing  – allows requests for clearing, acknowledgements and exceptions, and 
clearing confirmed or clearing refused messages to be sent.; 

 consent – allows DCOs to request consent from clearing member firms to clear a 
trade 

 allocation – allows firms to request that trades be allocated and for DCOs to report 
back status, exceptions, etc. 

 others – there are other messages that can be used, including for example option 
expiry/notification, or credit event notification. 

 
From “Reporting” view, there are a number of reports that can be used, for example: 

 Position report – lists open positions at a given point in time; can also be used to 
report settlement amount, NPVs, margin calculations, etc. 

Clearing Requests 

DCO 

Clearing Status

Approval Requests 

Clearing Status

Clearing
Firm 

SEF Approval to Clear 



FpML 5 User Guide 2012 Edition 
 

  23

 Position Activity report – lists changes in positions over a time period (added, 
modified, removed) 

 EventActivityReport – lists specific events that have occurred over a time period 
(e.g., novations, netting) 

 Reset Report – lists rate fixings and the affected trades 
 TradeCashFlowsAsserted – allows calculations of settlement amounts to be detailed. 
 

These messages are described in Section 7. 

3.4.4. Customizations / Restrictions 
To restrict the range of acceptable products, and to add service-specific details, the schema can 
be customized to add fields and/or eliminate options. See Section 8 for more information on 
how to customize FpML. 

3.4.5. Validation 
To validate that the confirmation message meets basic FpML business rules and possibly 
platform-specific business rules, the FpML validation framework can be used. This allows 
specific business constraints to be enforced for all input messages. See Section 5 for more 
information. 

3.4.6. Tools and Technologies 
To implement this application, parties will need the following: 

 The ability to create the FpML, as described above in section 3.2.4. Parties need to 
ensure that the generated FpML meets the clearing service’s specific requirements and 
constraints. 

 The ability to transmit the FpML to the clearing service. The mechanism to do this will 
typically be defined by the service, and may include technologies such as: 

o Custom Application Programming Interfaces (APIs), typically based on 
sockets over dedicated networks 

o Message-oriented middleware on dedicated networks 
o Web services 

Services will need to create the following, among other items: 
 A message delivery infrastructure 
 An approval process 
 A trade validation mechanism 
 Valuation and margining calculation and reporting 
 Possibly a netting and netting report process 

 

  



FpML 5 User Guide 2012 Edition 
 

  24

3.5. Internal Trade Archive 

3.5.1. Objective 
Another possible application is the use of FpML to store trades, e.g., to a file system or 
database. The flexibility of FpML allows a variety of trades with different details to be saved 
without ongoing database maintenance. Also, FpML is well suited for saving multiple versions 
of trades; each trade version can be stored in a different file or database record. A simple 
application for this type of trade archive allows trades to be pulled from the repository and 
displayed. 
 

 

3.5.2. Structures Used 
In this application, although it is possible to represent the trades using messages, there is less 
benefit in doing so, because the application is not fundamentally a messaging application. If 
messages are desired, the A2A messages described in Section 3.2 can be used. Alternatively, 
the FpML “dataDocument” format, a non-message format, can be used. See Section 5 for more 
details on dataDocument.  
 
In addition, there may be some desire to organize or group trades into collections of related 
trades, e.g., based on underlyer, trading desk, counterparty. If so, the FpML “Portfolio” 
structure, described in Section 5, can be used to record portfolio contents. 

3.5.3. Tools 
To implement this type of application, the following is needed: 

 The ability to generate FpML from the source system. This can be done in a variety of 
ways, as described above. 

 The ability to store and organize the files. Different ways of doing this include: 
o Using a basic file system-based storage scheme 
o In a relational database, with one “blob” (or large text buffer) record per trade 

version stored in the database 
o Using an XML document management tool 

 A retrieval mechanism. This is usually tied to the storage mechanism, but may in 
addition offer features such as: 

o The ability to query trades based on content 
o The ability to display multiple versions of trades, and possibly to compare 

them 
o Web-based navigation or query tools 

 
 A mechanism for displaying the trades. This can be done in several ways, such as: 

o A web browser-based display tool such as the FpML Editor/Viewer, available 
from the FpML website 

o A Java application based display application 

Trading 
System Save Trades Extract TradesTrade 

Archive
Display 

Tool 



FpML 5 User Guide 2012 Edition 
 

  25

o A system for rendering the trades into a report format (e.g., into PDF files) as 
required 

3.5.4. Issues/Notes 
 One concern often cited by developers with the use of XML (and especially FpML) for 

this type of application is the large file size. However, this concern is usually not a 
serious limitation, for the following reasons: 

o FpML trade representations are typically not really that large relative to 
modern technology. A typical parametric view of a trade is about 10-20KB. 
100,000 trades will require about 1-2 GB of storage. 100 versions each of 
100,000 trades will require about 100 GB. This will fit on a single large disk. 

o If this is too much (for example, because additional information such as cash 
flows is being kept, or because storage is limited), FpML is highly 
compressible. A single trade is likely to compress by a factor of 4 to 10, and 
more if it is large.  

o A large collection of trades and trade versions is likely to compress by a factor 
of at least 10 and up to 100 fold or more when compressed as a single unit, 
depending on the commonality between trades. Also, one compressed large 
archive file typically uses computer file systems more efficiently than a large 
number of small files. This technique is useful for creating and distributing 
archival snapshots of large numbers of trades. For example, a flash drive could 
hold a dealer’s entire current derivatives inventory, possibly even with cash 
flows, when represented as a compressed archive.  

 There are tools on the marketplace for comparing XML or FpML instance documents 
and reporting differences between them. For reporting differences between successive 
versions of FpML instance documents, a number of XML differencing tools could be 
used. For more information, search the web using key words “XML differencing” or 
“XML diff”. 

 

  



FpML 5 User Guide 2012 Edition 
 

  26

3.6. External Trade Repository (for Regulatory Reporting) 

3.6.1. Objective 
Recent regulations require market participants and facilities in many jurisdictions to report 
OTC derivative trading activity to external trade repositories, for analysis by the regulators, 
and possibly for public reporting.  
 
As opposed to with an internal trade repository, in this case it is the messaging interface that is 
the most important place that FpML can add value.  A consistent interface allows firms to use 
the same interface to report to multiple trade repositories with minimal rework, and ensures 
that the trade repository interface is in alignment with the industry needs. 
 
A workflow diagram, available at http://www.fpml.org/documents/OTC-Derivatives-Trade-
Flow-to-SDR.pdf, illustrates, at a high level, the interaction between the different organizations 
and the types of FpML messages they would be exchanging. 

3.6.2. Requirements 
 
Some of the requirements that this type of service interface will need to meet include: 

 support real time public activity reporting 
 support non-public event-driven reporting as well as periodic snapshots 
 support for specifically mandated surveillance fields 
 ability to verify or dispute repository contents 
 ability to supply valuations for positions 
 ability to withdraw trades from the repository 
 consistent trade and product identification system 
 support for multiple regulators globally 

3.6.3. Views and Business Processes Used 
 
To support these requirements, FpML has developed two views. 
 
Transparency view is used for real-time public reporting, and contains a stripped down trade 
representation intended to fully support only standard product types. The main business 
process used include: 

 public execution – Specifically the publicExectionReport, as well as 
acknowledgement, exception, and retraction messages. 

 verification – Specifically the verificationStatusNotification and related messages. 
 
recordkeeping view is used for non-public regulatory reporting, and supports a full trade and 
product representation, while allowing a less comprehensive report. The main business 
processes used include:  

 nonpublic execution – Specifically the nonpublicExectionReport, as well as 
acknowledgement, exception and retraction messages. 

 verification – Specifically the verificationStatusNotification and related messages. 
 valuation – Specifically the valuationReport message and related messages. 

 



FpML 5 User Guide 2012 Edition 
 

  27

There are many surveillance fields supported mostly in the “partyTradeInformation” block in 
the tradeHeader. Trades are identified using an enhanced (for version 5.3)  partyTradeIdentifier 
to hold the “Unique Swap Identifier” (USI).  This version of the partyTradeIdentifier allows 
the USI namespace to be represented in the “issuer” element.  The “reportingRegime” structure 
allows information to be provided about how this message is applicable to various regulatory 
reporting regimes and supervisors/regulators. 
 
The product taxonomy is represented using the ISDA product taxonomy modeled in FpML, 
and held in the <productType> element.  FpML published a coding scheme holding these 
values. A typical product type would be represented as: 
 
<productType productTypeScheme="http://www.fpml.org/coding-scheme/product-
type">InterestRate:IRswap:Fixed-Float</productType> 

3.6.4. Tools 
In addition to the usual tools for generating and processing FpML, there are a couple of tools 
under development to help with SDR reporting. 

 
The product taxonomy is being defined precisely using mostly XPath based rules to classify 
FpML trades into products.  A sample XSLT script is able to test trades against these rules. 

 
A similar script is expected to be provided to validate surveillance fields. 

  



FpML 5 User Guide 2012 Edition 
 

  28

3.7. Intra-day Activity Reconciliation 

3.7.1. Objective 
FpML can be used to reconcile intra-day activity as recorded in one system with that in 
another. This type of check could be used to monitor manual dual-keying processes, as a check 
on automated STP processes, or as a check between separate entities. In general, the idea is to 
provide a real-time electronic comparison of state changes across systems. 

 

3.7.2. Messages Used 
Following are some of the messages that can be used to implement this workflow: 

 From source systems to reconciliation engine: 
o Request Confirmation 
o Request Confirmation (indicating a correction) 
o Request Confirmation Retracted 

 From reconciliation engine to source systems: 
o Confirmation Status 

See Section 7 for more information about the matching messages. 

3.7.3. Reconciliation Approaches 
To implement the reconciliation engine, firms have employed different strategies, including: 
 Internally developed systems: Some firms choose to develop custom FpML matching and 

reconciliation technology. 
 Third party systems: Some firms choose to acquire and deploy third party 

matching/reconciliation technology, including: 
 XML differencing: There are some generic XML tools for comparing documents 

that can be used. 
 FpML-specific tools: There are some FpML-specific or FpML-aware tools that can 

be used for matching/reconciling trades represented in FpML. 

Activity
Reconciliation 

Engine 
Match Status 

Activity

Match  Status

System 
B 

System 
A 



FpML 5 User Guide 2012 Edition 
 

  29

3.8. Inventory Reconciliation 

3.8.1. Objective 
Even when automated intra-day reconciliation and confirmation processes exist, one might 
reconcile the current trade inventory as recorded in one system with that in another. This can 
be done on a periodic or incremental basis. The objective is to confirm that the trade population 
in the two places is within tolerable differences, if not identical. 
 

 

3.8.2. Messages/Structures Used 
In this application, the key is representing the trade economics; the workflow/activities are not 
important. For this reason, the preferred formats used to save the trades into FpML files are 
similar to those used in the Trade Archive application discussed above. 
 
In addition, it is common to organize the trades in the inventories into partitions or portfolios. 
This allows the reconciliation to work on smaller subsets of the inventory at a time. This 
typically provides performance and reliability advantages. 

3.8.3. Matching/Reconciliation Approaches 
Matching and reconciliation approaches are similar to those for intra-day reconciliation, but the 
message processing and management requirements are simpler. On the other hand, the data 
volume requirements are typically much higher. 

 Save 
Trades 

Reconciliation 
Engine 

Extract 
Trades 

System 
B 

System 
A 

Inventory A 

 Save 
Trades 

Inventory B 

Extract 
Trades



FpML 5 User Guide 2012 Edition 
 

  30

3.9. Bulk Reporting Applications 

3.9.1. Objective 
Yet another use of FpML might be to periodically (e.g., daily) generate reports of trade 
inventories and valuations for specific counterparties and send these to the counterparties to 
support processes such as collateral calls. Typically these reports will include multiple trades 
from multiple product types. Below is an example of this type of feed: 
 

 

3.9.2. Messages/Structures Used 
The PositionReport message fully supports this application by incorporating trade as well as 
valuation information. The trade data content is modeled reusing the existing FpML trade and 
product representations, discussed in Sections 5 and 6. The valuation information is modeled 
using the FpML Pricing and Risk framework, discussed in Section 7. 
 
In addition to this report, there are a number of other reports that can be used, for example: 

 The positionActivityReport can be used to report on changes in positions (e.g. new, 
modified, removed) positions over a period of time. 

 The eventActivityReport can be used to report on trading events (such as trades, 
amendments, early terminations) over a period of time. 

 The  exposureReport can be used to report on aggregate exposures, such as market 
value, counterparty risk, for example.  One key use of this report is the CFTC Part 20 
Large Trader Position Reporting report. 

 The resetReport can be used to report on rate fixings and the affected trades. 
 There are also various other valuation reports, cash flow and portfolio reconciliation 

reports, for example. 

3.9.3. Tools and Technologies 
To implement this application you will need technologies similar to those described above in 
Section 3.2. However, because this type of application is typically a periodic (e.g., daily) 
process, there are some differences in the types of suitable technologies. Following are some of 
the technologies that are likely to be required: 
 

 The ability to generate FpML, as discussed in previous sections. 
 The ability to transmit the FpML from dealers to clients. This could be done in a 

variety of ways, including: 
o File transfer 
o Download from a secure website 
o Some form of secure electronic mail, e.g., PGP / GPG 

 The ability to validate the FpML. This could be done using technologies including: 
o Custom XSLT style sheets 

Dealer trade 
processing 

system 
Positions/Valuations

Derivatives 
End -User 



FpML 5 User Guide 2012 Edition 
 

  31

o Business rules written using the FpML validation framework and implemented 
on a commercially available validation processor 

 The ability to read the incoming FpML. This could be done by converting the file to a 
format suitable for processing in existing systems, for example via: 

o XSLT-based style sheets 
 An XPath-based data extractor written in Java or C++, for example. 

 



FpML 5 User Guide 2012 Edition 
 

  32

  



FpML 5 User Guide 2012 Edition 
 

  33

4. How to Write FpML – Examples 

4.1. Introduction 
This section demonstrates some of the key FpML concepts by building two examples that 
demonstrate how FpML is formed and why it is structured the way it is. 
 
The first example (section 4.2 Forward Payment) demonstrates some basic aspects of FpML by 
representing a trade with very few economic details. 
 
The second example (section 4.3 IR Swap) concerns a vanilla interest rate swap confirmation 
message, and demonstrates how a somewhat more complex FpML instance document is 
formed. 
 
Other examples include 

 real-time public reporting of a commodity swap using Transparency view 
 non-public regulatory reporting of an equity option using Recordkeeping view 
 clearing of an FX option using Confirmation view 
 confirmation of an IR swap using Confirmation view 

4.2. Basic Example: Forward Payment 

4.2.1. Introduction 
On Jan. 14, 2012, ABC Bank agrees to make a payment to DEF Corporation in one year’s 
time, on Jan. 14, 2013. This date will be adjusted if it falls on a holiday. The payment will be 
15,000,000 GBP. 

 
In this example we develop an FpML 5.3 document that represents this transaction. 

4.2.2. Required Data Attributes 
The following attributes are required to represent this transaction: 

 The parties to the trade: represented by SWIFT BIC codes ABCDUS33 and 
DEFGGB2L. 

 The trade date: 2012-01-14 
 ABC’s reference number: A001. 
 The type of trade: “bullet payment” 
 Who’s paying: ABC 
 The payment amount: 15,000,000 
 The payment currency: GBP 
 The payment date: 2013-01-14 
 Date adjustment rules: “Following” convention, New York and London banking days 

ABC Bank 
15MM GBP 
 
On Jan 14, 2013 

DEF Corp 



FpML 5 User Guide 2012 Edition 
 

  34

4.2.3. Developing the FpML 

4.2.3.1.Root Element 
 
All XML documents have what is called a “root” element or “document” element.  
 
In FpML 5, every message has a different root element. E.g., dataDocument, 
requestConfirmation, executionNotification, resetReport, requestMargin, requestValuation 
Report, just to name a few. Throughout the user guide we’ll mostly use dataDocument as an 
example.  
(The full list of available root elements is described in section 7 or in the Messaging 
Framework insert at the end of this user guide.) 
 
Tags in XML are defined using angle brackets (“<” and “>” signs). There is an opening tag 
(<mytag>) followed by a matching closing tag (</mytag>). 
 
The following is a simplified version of the starting and ending tags: 
 

<dataDocument fpmlVersion=“5-3”  
              xmlns=” http://www.fpml.org/FpML-5/confirmation”> 
 
 <!-- party and trade details will go here --> 
 
</dataDocument> 

 
• The dataDocument keyword says that this is the top (“root”) of the FpML instance 

document. 
• The fpmlVersion attribute says that we are using FpML. With the removal of the 

<FpML> root element in version 5.x, the fpmlVersion attribute may be used to flag the 
start of the FpML document. The FpML namespace may be used as well to indicate the 
start of the FpML document. 

• dataDocument is available in all views. In this case, we are using the “Confirmation” 
view, as indicated by the namespace (xmlns attribute). 

• Some additional attributes (not shown here) will specify exactly how the “FpML” 
namespace is defined. This will link to the FpML schema. 

• The <!-- and --> symbols surround an XML comment; the comment is ignored by 
the receiving program. 

• The </dataDocument> tag ends the FpML. 
 

 
FpML 4 

FpML 4.x and earlier versions use <FpML> as the single root element.  
 

 
 
The additional attributes found in the root element are discussed in more detail in Section 5. 
 
 
 
 



FpML 5 User Guide 2012 Edition 
 

  35

 
 
 

4.2.3.2.Parties 
Second, model the participants to the trade. In FpML, the participants are represented by the 
“party” element. 
 
Following is an FpML representation of the two parties in this transaction: 
 

<dataDocument fpmlVersion=“5-3” …> 
 <party id=“abc”> 
  <partyId>ABCDUS33</partyId> 
 </party> 
 <party id=“def”> 
  <partyId>DEFGGB2L</partyId> 

<partyName>DEF Corp</partyName> <!-- optional --> 
 </party> 
</dataDocument> 

 
• The party keyword introduces a party definition 
• The attribute, id = “abc” creates an identifier that can be used throughout the 

document for referring to this party 
• The partyId keyword specifies the party’s ID (default is a SWIFT BIC code, but other 

coding schemes can be used). 
• The partyName keyword, can optionally be used to hold the legal name of the party. 

 
The party element is also discussed in Section 5. 

4.2.3.3.Trade 
Next, represent the business transaction itself. In FpML, this is represented by a “trade” 
element with a “tradeHeader” that provides some reference information: 
 

<dataDocument fpmlVersion=“5-3” …> 
 <trade> 
  <tradeHeader> 
   <partyTradeIdentifier> 
    <partyReference href=”abc”/> 
    <tradeId tradeIdScheme=”http://a.com/t-id”>A001</tradeId> 
   </partyTradeIdentifier> 
   <tradeDate>2012-01-14</tradeDate> 
  </tradeHeader> 
  <!-- product info skipped --> 
 </trade> 
 <-- party information omitted --> 
</dataDocument> 

 
 The trade keyword introduces the trade. 
 The tradeHeader keyword introduces identifying (non-economic) details. 
 The partyTradeIdentifier block holds identifying information specific to party ABC. 
 The tradeId element hold’s party A’s reference number for this trade. The tradeIdScheme 

attribute specifies the domain values defined by party A. 



FpML 5 User Guide 2012 Edition 
 

  36

 The tradeDate tag says when the trade was done. 
 
The “trade” element is discussed in more detail in Section 5. 
 
Please note that in FpML, the “party” elements typically go at the end of the FpML, after the 
trades. The locations of an href and its corresponding id in the instance document do not matter 
since XML references can work frontward or backward. 
 
So far from the list of required data elements, we have represented the following: 

 The parties:ABCDUS33 and DEFGGB2L, in the “party” elements, 
 The trade date: 2012-01-14; and 
 ABC’s reference number: A001 

The trade date and reference number appear in the “tradeHeader” element. 

4.2.3.4.Product 
Next, represent the actual trade economics; in FpML this is called the “product”. The product 
for a single payment in FpML is called a “bullet payment” and is represented by the 
“bulletPayment” tag. 
 

<dataDocument fpmlVersion=“5-3” …> 
 <trade> 
  <!-- trade header skipped --> 
  <bulletPayment> 
   <payment> 
    <!-- payment details go here --> 
   </payment> 
  </bulletPayment> 
 </trade> 
 <-- party information omitted --> 
</dataDocument> 

 
• bulletPayment is a kind of FpML “product”; this specifies what type of trade is being 

done. 
• Different products (e.g., swap, fxSwap, equityOption) could go here. See Section 5 for 

more details on product substitution. 
• bulletPayment is a product that consists only of a single “payment”. 
• Note that payment can be used in other places in FpML as well. For example, in 

option premium payments. 
 
Products are covered in more detail in Section 6. 
 
Next, specify the amount and direction of the payment. This is done by filling in part of the 
<payment> element, specifically the paying and receiving parties, and the amount of the 
payment: 
 



FpML 5 User Guide 2012 Edition 
 

  37

<dataDocument fpmlVersion=“5-3” …> 
 <trade> 
  <!-- trade header skipped --> 
  <bulletPayment> 
   <payment> 
    <payerPartyReference href=“abc”/> 
    <receiverPartyReference href=“def”/> 
     <paymentAmount> 
     <currency>GBP</currency> 
     <amount>15000000.00</amount> 
    </paymentAmount> 
    <!-- payment date information skipped --> 
   </payment> 
  </bulletPayment> 
 </trade> 
 <-- party information omitted --> 
</dataDocument> 

 
• payerPartyReference and receiverPartyReference specify respectively which party 

pays and which party is on the receiving side. (ABC pays, DEF receives).  
• They link to (reference) the party IDs (i.e., abc and def) created earlier. 
• paymentAmount introduces the size of the payment. 
• currency and amount provide details on the payment. 

 
Finally, within the bullet payment the date of the payment and the rules for adjusting it are 
specified: 
 
<!-- FpML and trade header information skipped --> 
<payment> 
<!-- party and amount info skipped --> 

<paymentDate> 
  <unadjustedDate>2013-01-14</unadjustedDate> 
  <dateAdjustments> 
        <businessDayConvention>FOLLOWING</businessDayConvention> 
   <businessCenters> 
    <businessCenter>GBLO</businessCenter> 
          <businessCenter>USNY</businessCenter> 
   </businessCenters> 
  </dateAdjustments> 
 </paymentDate> 
</payment> 
<-- rest of trade and party information omitted --> 
 

• paymentDate introduces the payment date and its adjustment rules 
• unadjustedDate gives the date prior to any adjustments 
• dateAdjustments gives the adjustment rules 
• businessDayConvention specifies what adjustment type is used 
• businessCenters specify what holiday centers to use, using a SWIFT coding scheme 

(these are London and New York) 
 
The concept of date adjustment is discussed in more detail in Section 5. This type of 
“adjustable date” structure, and the “dateAdjustments” contained within it, is widely used 
throughout FpML. 
 



FpML 5 User Guide 2012 Edition 
 

  38

4.2.3.5.Completed Example 
Below is the completed FpML corresponding to the previous fragments: 
<dataDocument fpmlVersion=“5-3”…> 
 <trade> 
   <tradeHeader> 
   <partyTradeIdentifier> 
    <partyReference href=”abc”/> 
    <tradeId>A001</tradeId> 
   </partyTradeIdentifier> 
     <tradeDate>2012-01-14</tradeDate> 
    </tradeHeader> 
    <bulletPayment> 
    <payment> 
      <payerPartyReference href=“abc”/> 
      <receiverPartyReference href=“def”/> 
       <paymentAmount> 
     <currency>GBP</currency> 
     <amount>15000000.00</amount> 
      </paymentAmount> 
      <paymentDate> 
     <unadjustedDate>2013-01-14</unadjustedDate> 
        <dateAdjustments> 

  <businessDayConvention>FOLLOWING</businessDayConvention> 
          <businessCenters> 
           <businessCenter>GBLO</businessCenter> 
           <businessCenter>USNY</businessCenter> 
          </businessCenters> 
         </dateAdjustments> 
    </paymentDate> 
     </payment> 
  </bulletPayment> 
 </trade> 
 <party id=“abc”> 
  <partyId>ABCUS33</partyId>  
 </party> 
 <party id=“def”> 
  <partyId>DEFGB2L</partyId> 
 </party> 
</dataDocument> 

4.2.3.6.Discussion 
The above example illustrates some of the key concepts in writing FpML: 

 FpML instance documents are wrapped within a root element that specifies the FpML 
version, schema location, and other information. The example omits at least one 
important attribute, the XML namespace (xmlns) attribute, that specifies how to find 
the FpML schema, which specifies the view. (See Section 5 for more information on 
linking schemas to FpML instance documents). 

 Parties are represented using the <party> tag. See Section 5 for more information on 
parties. 

 Transactions are described using the <trade> tag, and the <tradeHeader> tag is used to 
provide identifying information. See Section 5 for more information on trades. 

 Products are represented by a variety of tags under the <trade> tag, following the 
<tradeHeader>. See Section 6 for more information about how products are specified. 

 Adjustable dates are frequently used to represent date information. See Section 5 for 
more information on commonly used date building blocks. 

 Payments are represented using a variety of reusable types. See Section 5 for more 
information on commonly used building blocks such as payment. 

Trade 
Identifying 
Information 

Party Information 

Product 
Information 



FpML 5 User Guide 2012 Edition 
 

  39

4.3. IR Swap Confirmation Message Example 

4.3.1. Introduction 
ABC Bank wishes to send a message to DEF Corp. confirming an interest rate swap. 
The swap is a 5-year, $10 million notional fixed/float swap; ABC pays 6% semi-
annually, and DEF pays 3 month Libor quarterly. 
 
The diagram below represents the cash flows of the deal: 
 

 

4.3.2. Required Data Attributes 
Following are some of the attributes that need to be captured: 

 The sender of the message: ABC 
 The recipient of the message: DEF 
 The parties to the trade: represented by SWIFT BIC codes ABCDUS33 and 

DEFGGB2L 
 The trade date: January 14, 2012 
 The effective and termination dates: Jan. 16, 2012 to Jan. 16, 2017 
 The date adjustment conventions used for the effective and termination dates and 

the calculation periods: Modified Following convention 
 The business days applicable for the date adjustments: NY business days 
 The roll date: calculation periods roll on the 16th of the month 
 The calculation and payment frequency: semi-annual on the fixed side, quarterly 

on the floating side 
 Rate set in advance or in arrears: rates set in advance (beginning of calculation 

period) 
 Reset adjustments: modified following, using NY and London business days. 
 Fixing lag: 2 days (fixing 2 days before rate reset) 
 Payment in advance or in arrears: payment in arrears (end of calculation period). 
 The notional: 10,000,000 USD 
 The fixed rate: 6.00% 
 The fixed rate day count fraction: 30/360 
 Who is paying fixed (ABC) and float (DEF) 
 The floating rate index (a.k.a floating rate option): USD Libor, sourced from 

Telerate, 3-month tenor 
 The floating rate day count fraction: ACT/ACT.ISDA 

ABC Bank 
6%, semi-annual,  
 
on 10 MM USD 

USD Libor-3M, 
Quarterly, on 10MM 

DEF Corp. 



FpML 5 User Guide 2012 Edition 
 

  40

4.3.3. Developing the FpML 

4.3.3.1.Headers 

FpML root element 
 
The FpML root element is different than that in the bullet payment example. In this case the 
FpML instance document type is a “Request Confirmation” message in Confirmation view.  
 
<requestConfirmation fpmlVersion=“5-3”…> 
 <!-- FpML content will go here --> 
</requestConfirmation> 

Message header 
 
Since this is an FpML message, an FpML message header must be supplied. Among other 
things, the message header will specify the sender and the recipient. 
 
<requestConfirmation fpmlVersion=“5-3”…> 
 <header> 
 <messageId messageIdScheme="http://abc.com/msg">A01</messageId> 
 <sentBy>ABCDUS33</sentBy> 
 <sendTo>DEFGGB2L</sendTo> 
 <creationTimestamp>2012-01-14T15:38:00-00:00</creationTimestamp> 
 </header> 
</requestConfirmation> 
 

 The messageId provides an identifier that can be used to refer to the message, for 
example in a reply 

 The sentBy field says who sent the message 
 The sendTo field says who the message was sent to, i.e., the recipient 
 The creationTimestamp says when the message was created. It is expressed as a 

date, time, and time zone (offset from UTC) 
 
The message header is discussed in more detail in Section 5. 
  



FpML 5 User Guide 2012 Edition 
 

  41

Message correlation and sequencing 

Message correlation is essential to link successive messages together. By principle, 
there should be a single, well-defined way to link successive messages (such as 
corrections or retractions of requests or notifications). This should not rely on message 
or transport level information, but rather use business-level information. 

<requestConfirmation fpmlVersion=“5-3”…> 
 <!—header --> 
  <isCorrection>false</isCorrection> 
  <correlationId>123</correlationId> 
  <sequenceNumber>1</sequenceNumber> 
  <onBehalfOf> 
     <partReference href="party1"/> 
  </onBehalfOf> 
  … 
</requestConfirmation> 
 

 The isCorrection indicates whether the message corrects a previous message. 
 The correlationId field defines a unique identifier to be used by all subsequent 

messages related to the same process. 
 The sequenceNumber field provides the order by which the related messages are 

linked together. 

On Behalf Of 
The neutral view principle of FpML when combined with some of the notifications for 
post-trade processes results in situations where a third party, such as a custodian, 
cannot easily tell which side of the trade he is supposed to be processing. The 
onBehalfOf field clarifies the party for whom the trade should be processed.  
 

Parties, Trade and Trade Header 
 
The party, trade and trade header information is similar to that for a bullet payment, except for 
the values of the fields (e.g., the reference number), and therefore are not repeated here. Please 
see the bullet payment example in the previous section for more detail on how to fill these 
elements. 



FpML 5 User Guide 2012 Edition 
 

  42

4.3.3.2.Swap Product 
The interest rate swap itself is represented with the FpML “swap” keyword in the product slot 
of the trade. A swap can contain several swap streams in FpML. The typical number of swap 
streams is 2, as in this example. Each stream represents a payment stream from one party to the 
other. 
 

<requestConfirmation fpmlVersion=“5-3” xmlns=” 
http://www.fpml.org/FpML-5/confirmation”> 
 <trade> 
  <!-- trade header skipped --> 
  <swap> 
   <swapStream> 
    <!-- fixed stream details go here --> 
   </swapStream> 
   <swapStream> 
    <!-- float stream details go here --> 
   </swapStream> 
  </swap> 
 </trade> 
 <-- party information omitted --> 
</requestConfirmation> 

 
In this example, the first swap stream will represent the fixed payments from ABC to DEF, 
while the second will represent the floating payments from DEF to ABC. 

4.3.3.3.Fixed Stream 
Each stream starts with elements indicating which party is paying the cash flows represented 
by the stream. In the case of the fixed stream, DEF is paying and ABC is receiving: 
 

      <swapStream> 
        <payerPartyReference href="def" /> 
        <receiverPartyReference href="abc" /> 
        <!-- etc… --> 

 
Key remaining components of fixed interest rate streams include: 

 Calculation period dates, specifying when calculation periods occur; 
 Payment dates, specifying when payments occur; and 
 Calculation period amounts, specifying the amount of the payments. 



FpML 5 User Guide 2012 Edition 
 

  43

Calculation Period Dates 
 
The “calculationPeriodDates” component specifies when the calculation periods occur, 
including the effective and termination dates, the frequency, and the roll convention: 
 
<calculationPeriodDates id="fixDates"> 
 <effectiveDate> 

<unadjustedDate>2012-01-16</unadjustedDate> 
  <dateAdjustments> 
   <businessDayConvention>NONE</businessDayConvention> 
  </dateAdjustments> 
 </effectiveDate> 
   <terminationDate> 
     <unadjustedDate>2017-01-16</unadjustedDate> 
     <dateAdjustments> 
       <businessDayConvention>MODFOLLOWING</businessDayConvention> 
       <businessCenters id=”busCtrs”> 
         <businessCenter>USNY</businessCenter> 
       </businessCenters> 
  </dateAdjustments> 
 </terminationDate> 
 <calculationPeriodDatesAdjustments> 
  <businessDayConvention>MODFOLLOWING</businessDayConvention> 

    <businessCentersReference href="busCtrs"/> 
   </calculationPeriodDatesAdjustments> 
   <calculationPeriodFrequency> 
      <periodMultiplier>6</periodMultiplier> 
      <period>M</period> 
      <rollConvention>16</rollConvention> 
   </calculationPeriodFrequency> 
</calculationPeriodDates> 
 
The above specifies: 

 The effective date: 2012-01-16, with no adjustments. 
 The termination date: 2017-01-16, adjusted using the modified following convention, 

using New York business days. 
 The adjustments to be applied for each calculation period: modified following 

convention, and the same business centers as the termination date, i.e., New York 
business center. 

 The calculation frequency: every 6 months, with a roll date on the 16th of the month. 



FpML 5 User Guide 2012 Edition 
 

  44

Payment Dates 
 
The payment dates structure specifies how frequently and when the stream cash flows are paid. 
In this case, the payments are semi-annually, at the end of each calculation period. 
 

<paymentDates> 
<calculationPeriodDatesReference href="fixDates" /> 
<paymentFrequency> 

<periodMultiplier>6</periodMultiplier> 
<period>M</period> 

</paymentFrequency> 
<payRelativeTo>CalculationPeriodEndDate</payRelativeTo> 
<paymentDatesAdjustments> 

     <businessDayConvention>MODFOLLOWING</businessDayConvention> 
<businessCentersReference href="busCtrs"/> 

</paymentDatesAdjustments> 
</paymentDates> 

 
 The calculationPeriodDatesReference element explicitly links the payments to the 

fixed stream calculation periods. 
 The paymentFrequency element defines that payments occur every 6 months. 
 The payRelativeTo element states that payments are made at the end of the calculation 

period. 
 The paymentDatesAdjustments indicates that payment dates are to be adjusted using 

the modified following convention, using the set of business centers defined above 
(i.e., New York business days). 

Calculation Period Amounts 
 
The calculation period amounts element specifies how much money is paid during each 
calculation period. 
 
        <calculationPeriodAmount> 
          <calculation> 
            <notionalSchedule> 
              <notionalStepSchedule> 
                <initialValue>10000000.00</initialValue> 
          <currency>USD</currency> 
              </notionalStepSchedule> 
            </notionalSchedule> 
            <fixedRateSchedule> 
              <initialValue>0.06</initialValue> 
            </fixedRateSchedule> 
            <dayCountFraction>30/360</dayCountFraction> 
          </calculation> 
        </calculationPeriodAmount> 

 
 The calculation element wraps the calculation details. 
 The notionalSchedule element specifies the notional. In this case, it is 10,000,000 

USD, and does not change during the life of the swap. 
 The fixedRateSchedule element specifies the fixed rate that is paid, 6%. 



FpML 5 User Guide 2012 Edition 
 

  45

 The dayCountFraction element specifies that the day count fraction used is 30/360. 

4.3.3.4.Floating Stream 
With all the elements for the fixed stream defined we can now turn to the definition of the 
floating stream. A number of elements are similar to those in the fixed stream. There are 
however, several new elements describing the rules for the periodic rate reset; also, the 
calculation amounts are different than in the fixed stream. 

Elements similar to fixed stream 
Many of the elements in the floating stream are very similar to those in the fixed stream, and 
therefore are not shown here: 

 The “payerPartyReference” and the “receiverPartyReference” are similar to those in 
the fixed stream, except that the parties are reversed in role. 

 The calculation period dates element is very similar to that in the fixed stream. The 
only significant difference is that the calculation frequency is 3 Months (i.e., quarterly) 
instead of 6 Months. 

 The payment dates element is also very similar to that in the fixed stream, except that 
the frequency is quarterly and the payments are based on the floating calculation 
periods.  



FpML 5 User Guide 2012 Edition 
 

  46

Reset Dates 
One element that is new in the floating stream is the resetDates element, which defines rules 
for resetting the floating rate. Within it, the fixingDates element describes how the rates are 
observed relative to the reset dates. 
 
<resetDates id="resetDates"> 

<calculationPeriodDatesReference href="fltDates" /> 
  <resetRelativeTo>CalculationPeriodStartDate</resetRelativeTo> 

<fixingDates> 
<periodMultiplier>-2</periodMultiplier> 
<period>D</period> 
<dayType>Business</dayType> 
<businessDayConvention>NONE</businessDayConvention> 
<businessCenters> 
<businessCenter>GBLO</businessCenter> 
<businessCenter>USNY</businessCenter> 

</businessCenters> 
<dateRelativeTo href="resetDates"/> 

</fixingDates> 
<resetFrequency> 

<periodMultiplier>3</periodMultiplier> 
   <period>M</period> 
</resetFrequency> 
<resetDatesAdjustments> 

<businessDayConvention>MODFOLLOWING</businessDayConvention> 
<businessCentersReference href="busCtrs"/> 

</resetDatesAdjustments> 
</resetDates> 
 
 

 The resetDates element describes resetting rules, and the id attribute allows it to be 
referenced elsewhere in the document. 

 The calculationPeriodDatesReference explicitly indicates which calculation periods 
these resets are related to, i.e., the floating calculation period dates. 

 The resetRelativeTo says that the resets are done at the beginning of each calculation 
period (“in advance”). 

 The fixingDates element describes how the rates are observed relative to the reset 
dates. 

o There is a 2 business day lag from rate observation to reset (it is expressed as  
-2 days because fixing is before resetting). 

o The business days used for determining the lag are New York and London 
business days. 

o The fixing dates are relative to the reset dates. See Section 4 for more on the 
“dateRelativeTo” element. 

 The rate resetFrequency is quarterly (i.e., there is no averaging). 
 Reset dates are adjusted using the modified following convention and the previously 

defined business centers (i.e., New York). 



FpML 5 User Guide 2012 Edition 
 

  47

Floating calculation amounts 
The calculation amounts element in the floating stream is similar in terms of notional, but is 
different in terms of the floating rate calculation. In this case the floating rate calculation is 
quite simple. 
 

<calculationPeriodAmount> 
<calculation> 

<notionalSchedule> 
<notionalStepSchedule> 

<initialValue>10000000.00</initialValue> 
<currency>USD</currency> 

</notionalStepSchedule> 
</notionalSchedule> 
<floatingRateCalculation> 

<floatingRateIndex>USD-LIBOR-Telerate</floatingRateIndex> 
<indexTenor> 

<periodMultiplier>3</periodMultiplier> 
<period>M</period> 

</indexTenor> 
</floatingRateCalculation> 
<dayCountFraction>ACT/ACT.ISDA</dayCountFraction> 

</calculation> 
</calculationPeriodAmount> 

 
 The notionalSchedule element is the same as in the fixed stream. 
 The floatingRateCalculation element describes how the floating rate is computed. 
 The floatingRateIndex specifies the index (ISDA term, “Floating Rate Option”) used 

for observing the rate. In this case it is USD-LIBOR from Telerate. 
 The indexTenor element specifies the tenor of the index, in this case 3 Months. 
 The dayCountFraction element specifies the day count fraction to be used for 

computing the calculation period, in this case ACT/ACT.ISDA basis. 

4.3.3.5.Discussion 
 A number of the building block elements described above are covered in more detail in 

Section 5, including message headers, trades, trade headers, date adjustments, and the 
dateRelativeTo element. 

 The interest rate swap product itself is covered in detail in the Interest Rates section of the 
FpML Specification. 

 The example represents a vanilla interest rate swap, omitting much of the complexity that 
is possible in a full FpML swap. Some of the items that were omitted include: 

 Compounding: This is represented by setting the payment frequency less than the 
calculation frequency, and adding elements to describe how compounding is done. 

 Averaging: This is done by setting the resetting frequency higher than the 
calculation frequency, and adding elements to specify the averaging method. 

 Stubs: Both long and short stubs can be specified at the beginning of each stream, 
and short stubs at the end. This is done by specifying extra dates in the 
calculationPeriodDates element, and by specifying stub rate calculation details in 
the calculationPeriodAmount element. 

 Uneven notionals (i.e., amortizing, accreting, or roller coaster): This can be done 
by supplying steps in the notional schedule. 



FpML 5 User Guide 2012 Edition 
 

  48

 Uneven fixed rate: This can be done by supplying steps in the fixed rate schedule. 
 Rate treatment, spreads, multipliers: A variety of calculations can be specified for 

floating rates. 
 Cash flows: It is possible to list each cash flow explicitly, including the associated 

calculation periods and rate observations. 
 Features: A variety of swap features (a.k.a. “break clauses”) can be specified, 

including: 
o Mandatory and optional early termination 
o Extension 
o Cancellation 

 



FpML 5 User Guide 2012 Edition 
 

  49

4.4. Public Reporting of a Commodity Swap 

4.4.1. Introduction 
ABC Bank wishes to send a message to SDR LLC to publicly report a natural gas swap 
trade that ABC executed with DEF.  The swap is a cash-settled 1-month swap on a 
total notional quantity of 77,500 MMBTU. 
  
The diagram below represents the cash flows of the deal: 
 

 
 

4.4.2. Required Data Attributes 
Key attributes include: 

 Message sent by ABC to SDR 
 Product type:  Cash settled NG swap 
 effective and termination dates:  July 1 2006 to July 31 2006 
 underlying commodity reference price:  NATURAL GAS-HENRY HUB-NYMEX 

(from ISDA commodity reference price list.), first nearby settlement price on last day 
of the model 

 fixed price:  $6.295/MMBTU 
 total quantity (volume):  77,500 MMBTU 

4.4.3. Developing the FpML 
This message needs to be generated using the “publicExectionReport” message in 
“Transparency” view. 
 
The message will start as follows: 
<publicExecutionReport fpmlVersion=“5-3” 
xmlns=http://www.fpml.org/FpML-5/transparency” ...>  
 <header> 
 <messageId messageIdScheme="http://abc.com/msg">123</messageId> 
 <sentBy>abc</sentBy> 
 <sendTo>sdr</sendTo> 
 <creationTimestamp>2006-06-30T00:00:00-00:00</creationTimestamp> 
 </header> 
</publicExectionReport> 
 
Subsequent to this, the message header and messaging framework fields must be supplied. See 
above in the “requestConfirmation” example message for more information. 
 

ABC Bank 

$6.295,/MMBTU  
 
on 77500 MMBTU 

Henry Hub NYMEX 
price 

DEF Corp. 



FpML 5 User Guide 2012 Edition 
 

  50

 
After the  message framework fields, the sender will supply the payload.  This consists of an 
“originating event” (how the trade originated, in this case as a result of trading activity), and 
the trade body.  Inside the trade there will be a trade identifier (to help the SDR track the 
trade). 
 
<originatingEvent>Trade</originatingEvent> 
<trade> 
 <tradeHeader> 
  <partyTradeIdentifier> 
   <issuer>[ID of issuing firm]</issuer> 
   <tradeId>[transaction ID issued by that firm]</tradeId> 
  </partyTradeIdentifier> 
... 
 
Following this, there will be a number of surveillance fields in the “partyTradeInformation” 
block: 
 
  <partyTradeInformation> 
   <executionDateTime>xxx</executionDateTime> 
   <intentToClear>false</intentToClear> 
etc.... 
 
Following the end of the trade header, there is a commodity swap element, and some 
information identifying the asset class and product type, followed by the trade economic 
details: 
 
 <commoditySwap> 
  <primaryAssetClass>Commodity</primaryAssetClass> 
  <productType>Commodity:Energy:Gas:Swap:Cash</productType> 
  <effectiveDate> 
   <adjustableDate> 
    <unadjustedDate>2006-07-01</unadjustedDate> 
   </adjustableDate> 
  </effectiveDate> 
  <terminationDate> 
   <adjustableDate> 
    <unadjustedDate>2006-07-31</unadjustedDate> 
   </adjustableDate> 
  </terminationDate> 
 
Following this, there is a fixed and a floating leg: 
 
  <fixedLeg> 
   <fixedPrice> 
    <price>6.295</price> 
    <priceCurrency>USD</priceCurrency> 
    <priceUnit>MMBTU</priceUnit> 
   </fixedPrice 
   <notionalQuantity> 
    <quantityUnit>MMBTU</quantityUnit> 
   </notionalQuantity> 
   <totalNotionalQuantity>77500.00</totalNotionalQuantity> 
  </fixedLeg> 



FpML 5 User Guide 2012 Edition 
 

  51

 
The floating leg is similar, but instead of a “fixedPrice” element, there is a “commodity” 
element that contains the commodity reference price and a few other terms: 
 
  <floatingLeg> 
   <commodity> 
    <intrumentId instrumentIdScheme=”...”>NATURAL GAS-HENRY HUB-
NYMEX”</instrumentId> 
    <specifiedPrice>Settlement</specifiedPrice> 
    <deliveryDates>FirstNearby</deliveryDates> 
   </commodity> 
 
There is also a “calculation” element that contains a “pricingDates” structure that allows the 
day distribution to be reported: 
 
   <calculation> 
    <pricingDates> 
     <dayDistribution>Last</dayDistribution> 
    </pricingDates> 
   </calculation> 
 
The completed example is in FpML’s example set in Transparency view, in the generated-
products/commodity-derivatives folder – it is example #1. 



FpML 5 User Guide 2012 Edition 
 

  52

4.5. Non-public Reporting of an Equity Option 

4.5.1. Introduction 
 

ABC Bank wishes to send a message to SDR LLC to non-publicly report (for 
regulatory recordkeeping purposes) an equity option it has sold to DEF.  The option is 
an American call option with a size of 150,000 options, with an entitlement of 1 share 
each, on STMMicroelectronics N.V. ordinary shares, with a strike of €32.00.  In return 
DEF pays a premium of €405,000. 
  
The diagram below represents the cash flows of the deal: 

 
 

4.5.2. Required Data Attributes 
Key attributes include: 

 option style, expiration date: American, September  27, 2005 
 option type: Call 
 underlying equity:  STM-FP 
 size of option (entitlement, number of options): 150,000 options of 1 share 
 strike:  €32.00 

 
In addition, there a number of surveillance fields, including: 

 execution timestamp 
 whether the trade is to be cleared 
 what regulatory reporting regime the trade is intended for. 

 
See the full FpML example for details of these fields. 

4.5.3. Developing the FpML 
This message needs to be generated using the “nonpublicExectionReport” message in 
“Recordkeeping” view. 
 
The message will start as follows: 
<nonpublicExecutionReport fpmlVersion=“5-3” 
xmlns=http://www.fpml.org/FpML-5/recordkeeping” ...>  
 <header> 
 <messageId messageIdScheme="http://abc.com/msg">123</messageId> 
 <sentBy>abc</sentBy> 

ABC Bank 

max(STM - €32,0) * 150,000 
 

€450,000

DEF Corp. 



FpML 5 User Guide 2012 Edition 
 

  53

 <sendTo>sdr</sendTo> 
 <creationTimestamp>2011-01-01T00:00:00-00:00</creationTimestamp> 
 </header> 
</nonpublicExectionReport> 
 
Subsequent to this, the message header and messaging framework fields must be supplied. See 
above in the “requestConfirmation” example message for more information. 
 
After these  message framework fields, the sender will supply the payload.  This consists of an 
“originating event” (how the trade originated, in this case as a result of trading activity), and 
the trade body.  Inside the trade there will be a trade identifier (to help the SDR track the 
trade). 
 
<originatingEvent>Trade</originatingEvent> 
<trade> 
 <tradeHeader> 
  <partyTradeIdentifier> 
   <issuer>[ID of issuing firm]</issuer> 
   <tradeId>[transaction ID issued by that firm]</tradeId> 
  </partyTradeIdentifier> 
... 
 
Following this, there will be a number of surveillance fields in the “partyTradeInformation” 
block: 
 
  <partyTradeInformation> 
   <executionDateTime>xxx</executionDateTime> 
   <intentToClear>false</intentToClear> 

etc... 
 
The “reportingRegime” element holds information about what reporting regimes (such as Dodd 
Frank reporting, ODRF, the Hong Kong Trade Repository, MiFID, etc.) this trade is reported 
under.  This includes the supervisory body (e.g. regulator), the purpose(s) of the message, and 
the role of the party. 
 
        <reportingRegime> 
          <name>DoddFrankAct</name> 
          <supervisorRegistration> 
            <supervisoryBody>CFTC</supervisoryBody> 
          </supervisorRegistration> 
          <reportingRole>ReportingParty</reportingRole> 
          <reportingPurpose>RealTimePublic</reportingPurpose> 
          <reportingPurpose>PrimaryEconomicTerms</reportingPurpose> 
          <mandatorilyClearable>false</mandatorilyClearable> 
       </reportingRegime> 
 
Documentation provided by SDR implementations can provide more detail on how this is to be 
populated. 
 
 
 
 
 



FpML 5 User Guide 2012 Edition 
 

  54

The equity option itself is held in a element called “equityOptionTransactionSupplement” for 
typical SDR reporting applications.  It typically must contain the asset class and a product ID 
following the ISDA product taxonomy coding scheme: 
 
  <equityOptionTransactionSupplement> 
   <primaryAssetClass>Equity</primaryAssetClass> 
   <productType>Equity:Option:PriceReturnBasicPerformance:SingleName 
     </productType> 
 
Following this, it will contain references for the buyer and the seller of the option, the type of 
option (put or call), the underlyer (the STMicroelectronics stock), the exercise details, the 
strike, the number of options and option entitlement, and the premium, as well as optionally 
many other details of the product. 
 
Please see record-ex20 in Recordkeeping view in the “products” folder to see the completed 
example. 



FpML 5 User Guide 2012 Edition 
 

  55

4.6. Clearing of an FX forward 

4.6.1. Introduction 
 

SEF Corp (a swaps execution facility) wishes to send a message to ClearCo LLC (a 
derivatives clearing organization) requesting that an FX forward be cleared.  The FX 
forward is €20mm sold by DEF, in return for $18.35mm from ABC. 

 

 

4.6.2. Required Data Attributes 
Key attributes of the trade include: 

 the value date:  Dec. 21, 2001. 
 notional amount and currency:  €20,000,000 sold by DEF to ABC in return for 

$18,350,000 from ABC to DEF. 
 It is also possible to supply the  forward exchange rate implied by these amounts 

4.6.3. Developing the FpML 
To support clearing requests, the FpML “Confirmation” view must be used, and for this request 
we need the “requestClearing” message. 
 
<requestClearing fpmlVersion=“5-3” xmlns=http://www.fpml.org/FpML-
5/confirmation” ...>  
 <!-- FpML content will go here --> 
</requestClearing> 
 
Subsequent to this, the message header and messaging framework fields must be supplied. See 
above in the “requestConfirmation” message example for more information. 
 
  

ABC Bank 

$18.35mm 
 

€20mm 

DEF Corp. 



FpML 5 User Guide 2012 Edition 
 

  56

Following this, the trade being cleared must be supplied.  This trade will have FpML trade 
header information as usual, followed by an FpML representation of an FX forward.  This will 
list the two currency amounts that are exchanged (together with which party is paying and 
receiving each currency) and the value date: 
 
 <fxSingleLeg> 

<exchangedCurrency1> 
   <payerPartyReference href=”party2”/> 
   <receiverPartyReference href=”party1”/> 
   <paymentAmount> 
    <currency>EUR</currency> 
    <amount>20000000</amount> 
   </paymentAmount> 
  </exchangedCurrency1> 

<exchangedCurrency2> 
   <payerPartyReference href=”party1”/> 
   <receiverPartyReference href=”party2”/> 
   <paymentAmount> 
    <currency>USD</currency> 
    <amount>18350000</amount> 
   </paymentAmount> 
  </exchangedCurrency2> 
  <valueDate>2001-12-21</valueDate> 
 </fxSingleLeg> 
             
The example #7 in the Confirmation view “business-processes/clearing” folder contains the 
complete message. In addition, that example supplies the optional forward exchange rate 
information. 
 



FpML 5 User Guide 2012 Edition 
 

  57

5. The Organization of FpML 

5.1. Introduction 

5.1.1. Purpose 
This section summarizes key concepts underlying the design of the FpML standard, in 
particular some of the architectural principles. In addition, it describes some of the more 
important cross-product structures that are used widely throughout the standard. 

5.1.2. Overview 
The section is organized as follows: 
 Architecture: a summary of FpML architecture principles and how FpML is built on XML. 
 Document/messaging structure: an introduction to FpML messaging. 
 Key transaction structures: key structures used to represent trades in FpML. 
 Reusable components: commonly reused building block components. 
 Validation: an introduction to the FpML validation framework. 

5.2. Architecture 

5.2.1. Architecture Principles 
The way that FpML 5 uses XML is documented in the FpML Architecture 3.0 available at 
http://www.fpml.org/spec. 
 
Some key points that the FpML Architecture defines include: 
 How the data is represented in XML. For example, business data should be held in XML 

element content, not in XML attributes. There is also coverage for “schemes”, which allow 
list values to be described. 

 Naming conventions. For example, element and attribute names should be in 
“lowerCamelCase” (mixed capitalization, starting with a lower case). 

 How to reference within and between documents. This is typically done with “id” and 
“href” attributes that link to them. 

 How versioning is to be represented. This is done in part using the “version” attribute. 
 How namespaces are to be used. 
 How extensions are to be created. 
 
Following is an example of how XML can be written, following the FpML architectural rules: 
 
<lowerCamelCaseElement> 

 <anotherElementWithData>DataInElement</anotherElementWithData> 
 <anElementReference href=”target”/> 
 <theTargetElement id=”target”>Some Data</theTargetElement> 
</lowerCamelCaseElement> 

 
 
 
 
 



FpML 5 User Guide 2012 Edition 
 

  58

Following is an example of well-formed XML that doesn’t follow the FpML architectural 
rules: 
 
<ILLEGAL_ELEMENT_NAME> 
 <BadElemName BadAttribute=”Data Not Allowed Here”/> 
</ILLEGAL_ELEMENT_NAME> 

 
The errors in the last example include: 

 Illegal naming conventions for elements and attributes (all should be lowerCamelCase) 
 Use of attributes to hold business data 

5.2.2. Schema and Instance Documents 
So far in this user guide we have focused on examples of FpML instance documents. In XML 
terms, these are called “instance” documents. These documents are instances (or if you prefer, 
examples) of documents whose structure is defined by a “schema” document. The schema 
defines the rules for building an instance document, i.e., “grammar” and “vocabulary”, or 
“syntax”. In much of the FpML specification documentation, the emphasis is on the schema, as 
opposed to the instances. This is because the instances will be different for every use, while the 
schema is the same for all. 
 
The schema and the instances are linked as follows: The root element in an FpML instance 
document has an “xmlns” (XML namespace) attribute, not described so far, that specifies the 
“namespace” (i.e., the vocabulary) that is used by the instance. The example below shows all 
of the attributes that the FpML root element will typically contain: 
 
<dataDocument 
 fpmlVersion=“5-3”  
 xmlns= “http://www.fpml.org/FpML-5/confirmation” 
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
 xsi:schemaLocation="http://www.fpml.org/FpML-5/confirmation fpml-main-5-3.xsd"> 
 

 The fpmlVersion attribute is an FpML attribute to define the FpML version that was 
used to create the document. 

 The xmlns attribute specifies the namespace that is followed by the document. This is 
the official link between the instance document and the schema. The XML document 
processor is supposed to use this namespace to find the schema that was used. In the 
above example, the FpML 5 confirmation view namespace (i.e., 
http://www.fpml.org/FpML‐5/confirmation) is specified as the default namespace. 
Any element without a namespace prefix (e.g., <payment>, <currency>) is therefore 
considered to be in the FpML 5 confirmation view namespace. Different views may 
adjust product definitions to suit particular business processes or stage of the trade 
life cycle. 

 The xmlns:xsi attribute defines the xsi namespace, so the parser will be able to 
understand what to do with the xsi:schemaLocation attribute described below (i.e., to 
recognize it as a special, pre-defined attribute). 

 The xsi:schemaLocation attribute is an optional attribute that gives a hint to the XML 
document processor of where to find the schema document. Note that the XML 
document processor is free to ignore this and use its own version of the schema file. 

 
 



FpML 5 User Guide 2012 Edition 
 

  59

The relation of these documents can be diagrammed as follows: 
 

 
 
Two standard schema-related namespaces worth describing include the following: 

 For XML schema itself, “http://www.w3.org/2001/XMLSchema”. This namespace 
is used to indicate that the associated elements are being used to define an XML 
schema. This namespace is usually identified with the prefix “xsd” or “xs”. It is 
normally found only in XML schema definition documents, not in instance 
documents. 

 For XML schema instances, “http://www.w3.org/2001/XMLSchema-instance”. 
This namespace is used within instance documents for hints or advice to XML 
document processors about how to use the XML schema associated with the 
instance document. It is usually identified with the prefix “xsi”. It is normally 
found in instance documents and not in schema documents. FpML uses the xsi 
namespace to tell the parser which message type to validate the document against. 

 
The FpML schema is also divided into a number of smaller subschema files for 
maintainability: 

 The overall collection of subschema files is defined in fpml-main-5-x.xsd.  
 Top level structures like document and trade are defined in fpml-doc-5-x.xsd. 
 Shared components and enumeration types are defined in fpml-shared-5-x.xsd and 

fpml-enum-5-x.xsd.  
 Messaging is defined in fpml-msg-5-x.xsd and in several business process specific 

schema files, discussed in Section 7. 
 Derivative products are defined in a variety of asset class-specific files (e.g., -irs-, -cd-, 

-eqd-, -fx-), and underlying assets are defined in fpml-asset-5-x.xsd. 
where x stands for the minor FpML version. E.g., FpML 5.3. 
 
This organization is documented in more detail in the first two sections of any version of the 
FpML specification (i.e., Section 1 – Introduction and Overview, Section 2- FpML Overview). 
 

FpML instance 
documents 

Reference via namespace 
FpML 
schema 



FpML 5 User Guide 2012 Edition 
 

  60

Following is a summary of the dependencies of the different FpML sub-schemas. 

 
Note that the available messaging schemas will vary by view. Some of the view-specific 
messaging subschemas include: 

 fpml‐confirmation‐processes.xsd (confirmation) 

 fpml‐recordkeeping‐processes.xsd (recordkeeping) 

 fpml‐reporting.xsd, fpml‐collateral‐processes.xsd, fpml‐reconciliation.xsd (reporting) 

 fpml‐transparency‐processes.xsd (transparency) 
 

fpml-main.xsd

fpml-doc.xsd 

fpml-msg.xsd 

shared schemas 

messaging 
schemas 

(varies by view) 

product 
schemas 

pricing and 
risk 

schemas 



FpML 5 User Guide 2012 Edition 
 

  61

5.2.3. Architectural Changes Between Versions 
Over the years, FpML’s architecture has changed slightly. The following gives an overview of 
the more significant changes that have occurred between the different versions. More detailed 
information on these changes and the rationale for them can be found in the respective versions 
where this change was first used. 
 
 Up to version 3.0, the FpML syntax was defined in a document called a DTD (Document 

Type Definition). This format is more compact than XML schema, but not as powerful nor 
as descriptive. With the introduction of schema, there were a large number of changes in 
the internal organization of the schema. 

 Top level structural changes. Between versions 1 and 3, a couple of structural changes 
were introduced, in particular: 

 In version 1.0, products were wrapped in a “product” tag. This was dropped from 
subsequent versions. 

 
Version 1.0: 

<trade> 
 <tradeHeader> . . . </tradeHeader> 
 <product> 
  <swap> . . . </swap> 
 </product> 
</trade> 
 

Version 2.0+: 
<trade> 
 <tradeHeader> . . . </tradeHeader> 
 <swap> . . . </swap> 
</trade> 
 
 Up to version 2.0, parties were within the trade element. They were moved out of 

the trade element in version 3.0. 
 
Versions 1.0 – 2.0: 

<trade> 
 <tradeHeader> . . . </tradeHeader> 
 <swap>. . .</swap> <!-- or “product”, or other product --> 
 <party id=”abc”> 
  <partyId>ABC123</partyId> 
 </party> 
</trade> 

 
Versions 3.0 and 4.x: 

 <trade> 
 <tradeHeader> . . . </tradeHeader> 
  <swap> . . . </swap> <!-- or other product --> 

    </trade> 
    <party id=”abc”> 
     <partyId>ABC123</partyId> 
    </party> 

 
 

 There have been some changes in the handling of list values : 
 Up to version 3.0, all of these were done using FpML “schemes”, with scheme 

defaults in the FpML root element. Schemes look like the following: 



FpML 5 User Guide 2012 Edition 
 

  62

 
<currency currencyScheme=”http://schemeURI”>USD</currency> 
 
 From version 4.0 onward, some of the smaller and more stable schemes were 

moved to XML Schema “enumerations”. Also, scheme defaults were removed 
from the FpML header element and put into the schema. Enumerations look like 
the following: 

 
<businessDayConvention>FOLLOWING</businessDayConvention> 
 

 Intra-document referencing syntax has changed slightly: 
 Versions 1.0 – 2.0: 
<payerPartyReference href=”#abc”/> 

 
 Versions 3.0 – 4.x: 
<payerPartyReference href=”abc”/> 

 
 From version 4.0 onward, the majority of the elements are defined locally to avoid name 

collisions. 
 
 Each FpML version has its unique namespace. 

 
FpML 4.0 REC http://www.fpml.org/2003/FpML-4-0 
FpML 4.1 REC http://www.fpml.org/2004/FpML-4-1 
FpML 4.2 REC http://www.fpml.org/2005/FpML-4-2 
FpML 4.3 REC http://www.fpml.org/2007/FpML-4-3 
… 
FpML 4.8 REC http://www.fpml.org/2010/FpML-4-8 
FpML 4.9 REC http://www.fpml.org/2010/FpML-4-9 
 

 Starting in version 5.0, minor FpML versions share the same namespace. Each view has a 
different namespace to distinguish between the different types of applications. 
 
FpML 5.0 REC http://www.fpml.org/FpML-5/confirmation   (confirmation view) 

http://www.fpml.org/FpML-5/reporting    (reporting view) 
 

FpML 5.1 REC http://www.fpml.org/FpML-5/confirmation   (no change) 
http://www.fpml.org/FpML-5/reporting    (no change) 

    … 
FpML 5.3 REC http://www.fpml.org/FpML-5/confirmation   (no change) 

http://www.fpml.org/FpML-5/reporting    (no change) 
http://www.fpml.org/FpML-5/recordkeeping  (new view) 
http://www.fpml.org/FpML-5/transparency   (new view) 

 The FpML root element was removed in version 5.0 and replaced by multiple root 

elements. Type substitution on the root element (xsi:type) is no longer used to select the 

message type and its associated content model. The <FpML> element has been removed 

from the schema in favor of distinct root elements. Multiple roots is easier to understand 

than type substitution at the root level and certain tools also had problems processing 

xsi:type. 



FpML 5 User Guide 2012 Edition 
 

  63

5.3. Document / Messaging Framework  
FpML instance documents are all based on the “Document” type, in other words the “FpML” 
element is defined to be of type “Document”. There are two main classifications (subtypes) of 
Documents:   

 Data documents are documents that contain only data, not messages. These are 
relatively unstructured and are intended primarily for non-messaging uses or uses 
within proprietary messaging frameworks. They are represented using the 
“DataDocument” type. 

 Message documents are intended to be used for communicating between firms or 
systems. They are represented using a variety of types, as described below. 

 
Following are common characteristics of messages: 

 Message documents are divided into three main types: 
o Notification messages are used to send unsolicited information. 
o Request messages are used to ask for something to be done. 
o Response messages are used to reply to “Request” messages. 

 All messages have a message header. A message header contains information about the 
sender, the recipient, and various pieces of message identification information. The 
interest rate swap example in Section 4.3.3.1 shows an example of a simple message 
header. In addition, the message header can hold information such as: 

o “copyTo” addresses, for recipients that should get a copy of information. 
o An “inReplyTo” element, which can be used to indicate the message that this 

replies to. 
o An “expiryTimestamp”, for indicating when the message should be ignored as 

too old.A digital signature, for authenticating the message sender. 
 
Sample message header 
 
<executionNotification fpmlVersion=“5-3”...> 
 <header> 
 <messageId messageIdScheme="http://abc.com/msg">A1</messageId> 
 <inReplyTo messageIdScheme="http://def.com/msg">B2</inReplyTo> 
 <sentBy>ABCDUS33</sentBy> 
 <sendTo>DEFGGB2L</sendTo> 
 <creationTimestamp>2012-06-02T15:38:00-00:00</creationTimestamp> 
 <expiryTimestamp>2012-06-02T18:38:00-00:00</expiryTimestamp> 
 </header> 
 <!-- message content goes here --> 
</exectutionNotification> 
 

Section 7 of this user guide provides a more detailed overview of the messaging framework. 
 

5.3.1. Sample Message Flows 

Notification Message Flow: 
 
The standard notification message flow is a one way flow from the sender to the recipient. 
However, notification messages may have been triggered by a previous message, so they are 
allowed (but not required) to contain an “inReplyTo” element to identify that original message. 



FpML 5 User Guide 2012 Edition 
 

  64

 
 

Request/Response Message Flow: 
 
The standard request message flow is a two-way, request-response interaction. Typically, the 
response will indicate the message that is being responded to in the “inReplyTo” field. 
 

 

Base messages: 
 
The following diagram shows the main types of messages (e.g., request / response / 
notification). All FpML messages are derived from one of these base message types. 
 

 

 

 

Sender 

Request message 
Recipient 

Response message 

Sender Notification message Recipient 



FpML 5 User Guide 2012 Edition 
 

  65

Message Naming Convention: 

Messages follow this naming convention: 

• requestXxx 
• xxxAcknowledgement 
• xxxException 
• requestXxxRetracted 
• xxx[Status] or xxx[Response] 

For the consent negotiation process, for example, the messages include: 

• requestConsent – initiating request 
• consentAcknowledgement - acknowledgement 
• consentException - exception 
• requestConsentRetracted – retraction of the request 
• consentGranted - response 
• consentRefused – response 

 
See the Messaging Framework insert at the end of the user guide for a full list of messages. 

5.3.2. Generic Messaging / Multi-Event Workflows 
In FpML 5, most workflows are designed to work consistently for a number of events, 
including new trades and post-trade events such as novations, amendments, and terminations.  
For example, one set of messages (e.g., execution or confirmation or allocation) can be reused, 
for many trading events (different payloads e.g., trade, amendment, option) using the same 
flow of messages. The messages can be applied in a number of different contexts. For example, 
the same <requestExecution> message can be used to execute an increase, an amendment, a 
termination, a novation, a trade. 

5.3.3. Views 
 'Views' are flavors of the FpML schema that adjust product definitions to suit particular 
business processes or stage of the trade life cycle. There are four views in FpML 5.3. 
Starting with FpML 5, each release of the specification is published as a set of schemas, one 
for each view. Each view has its own unique namespace URI. 
The idea of 'views' has existed since the inception of FpML but all the initial design and 
development focused on just the product 'confirmation' view. See sections 2.2 or 7.3 for more 
detailed information regarding FpML views. 

5.3.4. More Information 
The FpML specification provides more information in the Business Process Architecture 
section. It discusses the message types and structures in detail and describes several business 
processes using interaction diagrams. 
 
It is important to note that the FpML Messaging framework is message transport independent. 
In other words, it is not linked to any specific messaging transport protocol. Thus it can be used 
with any message transport, from simple ones like e-mail or HTTP, to message-oriented 
middleware. Section 7 of this user guide provides a more detailed overview of the messaging 
framework. 



FpML 5 User Guide 2012 Edition 
 

  66

5.4. Other Top Level Structures 
Some of the key, top level structures in an FpML instance document include: 

 Party 
 Trade  
 Trade Header 

o partyTradeIdentifier 
o partyTradeInformation 

 Portfolio 

5.4.1. Party 
 The Party element is used to identify a participant in a transaction. This participant does 

not need to be a principal to the transaction. Instead, it could be a broker, arranger, agent, 
etc. 

 Since version 4.2 the Party structure contains information about accounts. 
 Until version 4.1, the roles of the parties were typically identified using party references. 

Since version 4.2 a complete set of roles are defined within the tradeSide structure (see 
following Trade section). 

 For example, the following parties may be defined in an FpML instance document: 
 

 <party id=“abc”> 
  <partyId>ABCDUS33</partyId> 
  <account id=”abcacc”> 
   <accountId>1234345</accountId> 
  <account> 
 </party> 
 <party id=“def”> 
  <partyId>DEFGGB2L</partyId> 
  <account id=”defacc”> 
   <accountId>789123</accountId> 
  <account> 
 </party> 

5.4.2. Trade 
 The Trade element is used to hold transaction information. The Trade element includes 

o Identification information in a tradeHeader. 
o A product, providing economic details of the transaction 
o Optional additional information in subsequent slots, including items such as: 

 otherPartyPayments, for fees and commissions 
 brokers 
 calculation agents 
 collateral 
 documentation 
 governing law 
 allocations 



FpML 5 User Guide 2012 Edition 
 

  67

Example trade structure, with many (not all) slots filled 
 

 <trade> 
  <tradeHeader> 
   <partyTradeIdentifier> 
    <partyReference href=”abc”/> 
    <tradeId>A001</tradeId> 
   </partyTradeIdentifier> 
   <tradeDate>2012-01-14</tradeDate> 
  </tradeHeader> 
  <!-- product info skipped -->  

<collateral> 
<!-- collateral info goes here --> 

</collateral> 
<documentation> 

<!-- documentation info goes here --> 
</documentation> 
<governingLaw>GBEN</governingLaw> 

 </trade> 

5.4.3. Trade Header 
The tradeHeader is a structure within the trade meant to capture trade-related information 
which is not product specific. 
 

 

5.4.3.1.PartyTradeIdentifier 
 
The partyTradeIdentifyer is a structure defining one or more trade identifiers allocated to the 
trade by a party. A link identifier allows the trade to be associated with other related trades, e.g. 
trades forming part of a larger structured transaction. It is expected that for external 
communication of trade there will be only one tradeId sent in the document per party. 
 
Regulations have introduce the requirement for swaps market participants and utilities to report 
trades using a shared “unique swap identifier” (USI), also known as the Unique Transaction 
Identifier (UTI) in other jurisdictions.   
The USI/UTI is captured in FpML using a two-field representation within the 
partyTradeIdentifier. For example, 
 



FpML 5 User Guide 2012 Edition 
 

  68

 
 
<partyTradeIdentifier> 
<issuer issuerScheme=”http://www.fpml.org/coding-
scheme/external/cftc/issuer-identifier”>101ABCD123</issuer> 
<tradeId tradeIdScheme=”http://www.fpml.org/coding-scheme/external/unique-
transaction-identifier”>12345678901234567890123456789012</tradeId> 

</partyTradeIdentifier> 
 
The tradeId is an issuer-specific transaction identifier. The issuer element identifies the 
organization that issued the trade identifier. Both fields combined constitute the USI/UTI. 
 
The issuer coding scheme URI (http://www.fpml.org/coding-scheme/external/cftc/issuer-
identifier) is specified to reference a CFTC-created identifier to be used as a prefix for the firm 
that issues the USI. 

5.4.3.2.PartyTradeInformation 
 
The PartyTradeInformation is a type defining party-specific additional information that may be 
recorded against a trade. The structure is intended to capture, in particular, surveillance fields 
that would be used by various regulators to monitor systemic risk. 
In the recordkeeping view the structure is mandatory and available under 
trade\tradeHeader\partyTradeInformation.whereas is is optional in the  transparency, and 
reporting views. 
In the transparency view, a subset of surveillance fields from the PartyTradeInformation is 
made available within a party-independent trade\tradeHeader\tradeInformation block. 
 
An example of a surveillance field is the reportingRegime. It allows the organization to specify 
which if any relevant regulators or other supervisory bodies this is relevant for, and what 
reporting rules apply. 
 
Refer to the PartyTradeInformation type definition within the fpml-doc.xsd subschema for the 
full list, the definition and usage of the different surveillance fields. 

5.4.4. Portfolio 
The portfolio structure allows a collection of trades to be grouped together, identified by party 
trade identifier: 
 
<portfolio id="port1"> 

<tradeId id="t1" tradeIdScheme="http://b.com/tids">12</tradeId> 
<tradeId id="t2" tradeIdScheme="http://b.com/tids">23</tradeId> 
<tradeId id="t3" tradeIdScheme="http://b.com/tids">34</tradeId> 
<tradeId id="t4" tradeIdScheme="http://b.com/tids">45</tradeId> 
<tradeId id="t5" tradeIdScheme="http://b.com/tids">56</tradeId> 

</portfolio> 

5.5. Building Block Components 
FpML has a large number of building block components that are used widely throughout the 
schema. The following types of components are described in more detail in this section: 

 Currency and location related components 
 Date-related components 
 Payment 



FpML 5 User Guide 2012 Edition 
 

  69

 
There are of course many other shared components. Some of these, not described here, include 
components for identifying legal entities and instruments and components for describing 
settlement instructions and documentation. 

5.5.1. Currency and Location Related Components 
There are a number of building block components for holding currency and location-related 
information. Some of these include: 

 Currency 
 Money 
 Business Center, Business Centers 
 Exchange ID 
 Address 

 
Several of these have been used in earlier examples. “Currency” is used to hold a currency 
code (by default an ISO currency code), while “Money” holds a currency and an amount. In the 
following, “paymentAmount” is of type “Money”: 
 

<paymentAmount> 
 <currency>USD</currency> 
 <amount>1000000</amount> 
</paymentAmount> 
 

BusinessCenter holds a city or other business location, and BusinessCenters holds a collection 
of these. The default coding scheme for BusinessCenter is a four character SWIFT code in 
which the first two characters represent the country, and the last two represent the city. The 
following example represents London (GB + LO) and New York (US + NY) holidays: 
 

<businessCenters id=”pmtBusCtrs”> 
 <businessCenter>GBLO</businessCenter> 
 <businessCenter>USNY</businessCenter> 
</businessCenters> 
 

This collection can be referenced by a BusinessCentersReference: 
 

<businessCentersReference href=”pmtBusCtrs”/> 
 
This allows one set of business centers to be defined and then reused throughout a document. 
Most places where a list of business centers can be provided, a reference can be used instead. 
 
For identifying exchanges, the “ExchangeId” type is used, e.g., 

 
<exchangeId>NYSE</exchangeId> 

 
FpML does not currently standardize the values used in this scheme, so it is up to implementers 
to decide the coding scheme that they wish to use for this element. 
 
The “Address” type and types contained within it can be used to identify locations. An example 
address is: 

<routingAddress> 
 <streetAddress> 

     <streetLine>123 E 4 St.</streetLine> 
 </streetAddress> 



FpML 5 User Guide 2012 Edition 
 

  70

 <city>New York</city> 
 <state>NY</state> 
 <country>US</country> 
 <postalCode>10003</postalCode> 
</routingAddress> 

5.5.2. Date-related Components 
A number of components in FpML are used frequently for representing dates and date-related 
information. Some are described in the following sections. 

5.5.2.1.Adjustable date, business day conventions 
The Adjustable Date type holds an unadjusted date and adjustment rules (which are held in the 
“BusinessDayAdjustments” type). A number of elements throughout the schema are defined to 
be of type “AdjustableDate”, or of type “BusinessDayAdjustments”. The adjustments rules 
include a business day convention and a list of business centers. The following example states 
that the termination date is January 14, 2015, subject to the Following business day convention, 
using the payment business days defined in this FpML instance document: 
 

<terminationDate> 
 <unadjustedDate>2015-01-14</unadjustedDate> 
 <dateAdjustments> 
  <businessDayConvention>FOLLOWING</businessDayConvention> 
  <businessCentersReference href=”pmtBusCtrs” /> 
 </dateAdjustments> 
</terminationDate> 
 

In addition to the “AdjustableDates” type, there are several similar types that hold variations on 
this. These include: 

 AdjustableDate2: Date adjustments can be omitted or referenced 
 AdjustableDates: Holds several adjustable dates, using the same adjustment rules. 
 AdjustableOrRelativeDate(s): Holds either AdjustableDate(s) or Relative Date(s) 

(described below). 

5.5.2.2.Period, Frequency, Offset 
In addition to date types that allow specific dates to be defined, there are date types that allow 
time periods to be defined. These include: 

 Period: A defined number of periods. 
 Frequency: A defined number of period but used for specifying payment or 

calculation frequencies at which the value T (Term) is applicable. 
 Offset: A defined number of periods, additionally allowing Business or Calendar to be 

specified when the offset is in Days. 
 
Period is commonly used to hold tenors, expressed in numbers of days, weeks, months, or 
years. The following expresses that the index tenor is 3 months: 
 

<indexTenor> 
 <periodMultiplier>3</periodMultiplier> 
 <period>M</period> 
</indexTenor> 
 

 
 
 



FpML 5 User Guide 2012 Edition 
 

  71

The following example states that the payment days offset is 5 business days: 
 

<paymentDaysOffset> 
 <periodMultiplier>5</periodMultiplier> 
 <period>D</period> 
 <dayType>Business</dayType> 
</paymentDaysOffset> 

5.5.2.3.Date Relative To 
The “dateRelativeTo” element allows a reference to a specific date to be included in a 
structure. This allows an unambiguous definition of the base date used to compute a relative 
date. The following states that something is to be defined relative to the trade date: 
 

 <tradeDate id=”TradeDt”>2012-01-15</tradeDate> 
Then: 

 <dateRelativeTo href=”TradeDt” /> 

5.5.2.4.Relative Dates 
Leveraging the Offset and dateRelativeTo components described above, it is possible to define 
a date as being calculated relative to another date. 
 
The RelativeDateOffset extends the Offset to include: 

 The date adjustments used to compute the relative date. 
 An explicit reference to the date upon which the relative date is based. 

 
An example of this is the following: 
 

<fixingDates> 
 <periodMultiplier>-2</periodMultiplier> 
 <period>D</period> 
 <dayType>Business</dayType>    
 <businessDayConvention>NONE</businessDayConvention> 
 <businessCenters id="fixingBusinessCenters0">             
   <businessCenter>EUTA</businessCenter> 
 </businessCenters> 
 <dateRelativeTo href="resetDates0"/> 
</fixingDates> 

 
This states that fixing dates are 2 Target (EUTA) Business Days before the reset dates 
identified by “resetDates0”. No adjustment is necessary because “business” days are used for 
the offset. 
 
RelativeDateOffset is used by the “RelativeDate” and “RelativeDates” type to allow a date or a 
series of dates to be defined relative to another date or date series. 
 

 

 
Info 

A technical paper on financial date calculations in FpML, developed by the 
Validation Working Group is available for download from 
http://www.fpml.org/documents/technical.html 
This document describes how to perform calculations with dates and 
intervals to derive new dates and schedules. 

 
 



FpML 5 User Guide 2012 Edition 
 

  72

5.5.3. Payment 
Another structure used frequently throughout FpML is the “Payment” structure. It is used to 
represent a payment of a specified amount of money from one party to another at a specified 
time. It uses many of the components described above. This type is applied for defining 
payments such as the bullet payment in Section 4.2, premium payments, commission 
payments, and others. 
 
A payment consists of: 

 References to the payer and receiver 
 The amount 
 The unadjusted (and optionally adjusted) payment date 
 Optional categorization and settlement information 

 
An example payment is the following: 
 
<premium> 

<payerPartyReference href="partyA"/> 
<receiverPartyReference href="partyB"/> 
<paymentAmount> 
  <currency>EUR</currency> 
  <amount>100000</amount> 
</paymentAmount> 
<paymentDate> 
  <unadjustedDate>2012-08-30</unadjustedDate> 

<dateAdjustments>  
<businessDayConvention>FOLLOWING</businessDayConvention> 
<businessCenters> 

<businessCenter>EUTA</businessCenter> 
</businessCenters> 

  </dateAdjustments> 
</paymentDate> 

</premium> 
 
Description: Party A pays Party B EUR 100,000 on August 30, 2012; subject to the Following 
convention using Target business days. 

5.6. FpML Validation Framework 
The FpML business rules validation framework allows business constraints to be applied to 
FpML instance documents to ensure that they are meaningful. This section discusses how 
FpML business rules validation relates to XML Schema validation, what is provided with the 
FpML validation framework, and how validation enhances the FpML specification. 

5.6.1. What Does Validation Add? 
To understand what FpML validation does, it will be useful to follow an example document as 
it passes through successive levels of increasingly stringent checking. In the following, we 
consider the case of a payment that will be made on January 14, 2012, subject to adjustment by 
the Following business day convention. 

5.6.1.1.Well-formedness 
A first attempt to represent this payment might be as follows: 
 

Payment-date: January 14, 2012 
Adjustment: Following 



FpML 5 User Guide 2012 Edition 
 

  73

An XML parser will report errors with this document, as it is not well-formed XML (in fact, it 
is not XML at all). To resolve these errors, the document could be changed as follows: 
 

<PaymentDate adjustment=”Following”>January 14, 2012</PaymentDate> 
 

This is well-formed XML, and a non-validating XML parser will be able to parse this.  
 
However, this is not FpML, so an FpML-based application trying to process this document will 
not be able to understand it, because the document structure doesn’t use FpML terminology 
and structuring concepts. 

5.6.1.2. Syntactic Validation 
Continuing with the above example, the document could be restructured into schema-valid 
FpML as follows: 
 
<paymentDate> 
 <unadjustedDate>2012-01-14</unadjustedDate> 
 <dateAdjustments> 
  <businessDayConvention>FOLLOWING</businessDayConvention> 
 </dateAdjustments> 
</paymentDate> 

 
This document will now pass FpML schema validation when processed with a validating XML 
parser. This type of document can be described as “syntactically” valid or “schema valid”. It 
says that the document uses names and structures in accordance with those defined in the 
schema. 

5.6.1.3. Semantic Validation 
A document can be syntactically valid and still not completely understandable, because some 
business meaning is missing or incorrect. In the preceding example, the sample document 
meets the requirements of the FpML schema, but the adjustments cannot be understood fully 
because the business days to be used for the adjustments are not specified. The FpML schema 
does not require the business days to be specified, because if the business day convention is 
“None” the business days are meaningless. However, in this case the business adjustments can 
only be fully understood if the business days are specified. 
 
This type of validation is called “semantic” validation - it determines whether the FpML 
instance document is understandable. There are a series of business rules that an FpML 
instance document must pass to be meaningful. These business rules are in addition to the 
syntax rules defined by the schema. 
 
The corrected document is as follows: 
 
<paymentDate> 
 <unadjustedDate>2012-01-14</unadjustedDate> 
 <dateAdjustments> 
  <businessDayConvention>FOLLOWING</businessDayConvention> 
  <businessCentersReference href=”primaryBusinessCenters”/> 
 </dateAdjustments> 
</paymentDate> 
 
 
 



FpML 5 User Guide 2012 Edition 
 

  74

Another example: comparing dates 
Below is another example illustrating the need for semantic validation. Consider two dates, the 
trade effective date and termination date. 

‐ Effective date: January 15, 2017 
‐ Termination date: January 15, 2012 

 
A trade effective date that starts after the termination date does not make business sense and is 
obviously invalid data. 
 
In FpML, these dates would be represented as shown below. 
 
<effectiveDate> 
    <unadjustedDate>2017-01-15</unadjustedDate> 
    <dateAdjustments> 
        <businessDayConvention>NONE</businessDayConvention> 
    </dateAdjustments> 
</effectiveDate> 
<terminationDate> 
    <unadjustedDate>2012-01-15</unadjustedDate> 
    <dateAdjustments> 
        <businessDayConvention>NONE</businessDayConvention> 
    </dateAdjustments> 
</terminationDate> 
 
This document would pass FpML schema validation (these are indeed valid dates, taken 
individually) but would not be valid from a semantic/business standpoint.  An FpML validation 
rule could be defined to disallow this combination of dates. 

5.6.2. What Information Does Validation Provide? 
FpML validation rules are defined in the Validation Architecture section of the Specification 
http://www.fpml.org/spec (See section 4 of any version of the specification.) 
 
The FpML business validation rules define a large number of constraints on FpML instance 
documents similar to the above. For each constraint, the following is provided: 

 An English-language version of the rule 
 A technical expression of the rule  
 Optionally, examples of documents that pass the rule (valid test cases) 
 One or more examples of documents that fail the rule (invalid test cases) 

 
  



FpML 5 User Guide 2012 Edition 
 

  75

Below is a figure illustrating one of the many validation rules defined in the specification. Rule 
ird-14 defined for interest rate products provides a way to compare dates and ensure that the 
termination date must occur after the effective date. 
 

 
 
An FpML implementation that implements rule ird-14, for example, as part of its business 
validation layer, would be able to detect the problem discussed in the previous subsection. 
 
A number of implementations of the rules have been developed in a variety of languages.  
 
The rules that have been defined fall into a variety of categories. Some of the types of rules that 
have been defined include the following: 

 Date constraints: dates must be in a particular order or pattern. For example, 
termination date must be after effective date. 

 Structural constraints: if A is present, then B must also be. For example, if a stub 
period is defined, the payment amount calculations for it must also be defined. 

 Data value based constraints: if element A has a given value, then …. For example, 
if the business day convention isn’t NONE, the business centers must be supplied. 

 Special cases: unusual handling / requirements for particular specialized products/ 
markets. For example, the SFE (Sydney Futures Exchange) has special date roll rules. 

 
In addition, the FpML specification allows an FpML instance document to record which 
validation rule set(s) it is asserted to follow. This is done with the <validation> tag as follows: 
 
<requestConfirmation fpmlVersion=“5-3” . . . > 
 <header> 
  <messageId messageIdScheme="http://abc.com/msg">A01</messageId> 
  <sentBy>ABCDUS33</sentBy> 
  <sendTo>DEFGGB2L</sendTo> 
  <creationTimestamp>2012-01-14T15:38:00-00:00</creationTimestamp> 
 </header> 
 <validation validationScheme=”http://abc.com/rules”>IRD</validation> 
 <validation validationScheme=”http://abc.com/rules”>DEF-MSTR</validation> 
</requestConfirmation> 
 
This states that the document is believed to be valid according to ABC’s IRD and DEF-MSTR 
rule sets. Presumably this is ABC’s rules for interest rate products and its rules for its master 
agreement with DEF. 
 



FpML 5 User Guide 2012 Edition 
 

  76

This information may be used by a recipient to process the message, but in many cases the 
recipient will apply its own validation policies independent of the sender’s. 

5.6.3. How Does Validation Work Together with the 
Specification? 

The FpML Validation Rules defined in the specification are intended to be respected by all 
applications generating FpML, and as guidance to applications processing FpML on what 
validation rules to implement. These validation rules are considered to be required to be 
followed by an FpML application. 
 
In addition, custom validation rules can also be defined in a similar way for other purposes. 
These might include: 

 enforcing system constraints 
 enforcing business policies 
 enforcing rules defined by master agreements 
 enforcing platform-specific policies 

In this way, implementers of FpML-based applications can leverage tools using the FpML 
validation framework to identify and process validation constraints. 
 
Since FpML 4.2, including all 5.x versions, validation rules have been and are published as a 
part of the FpML specification. Versions prior to FpML 4.2 have the validation rules and 
framework included in a separate package.  



FpML 5 User Guide 2012 Edition 
 

  77

6. The FpML Product Framework 

6.1. Introduction 
This section describes FpML’s framework for identifying financial products, both derivatives 
and simpler financial products. It is intended to explain how the type of product is specified 
and how new products are added, but not to explain any particular product in detail. The 
section is organized into two subsections: 

 Derivative products  
 Underlying instruments 

6.2. Derivative Products 

6.2.1. Product Substitution Framework 
Derivative products form the core of what FpML is typically used to represent. They represent 
OTC derivatives products such as interest rate swaps, swaptions, FRAs, credit default swaps, 
equity swaps, commodity swaps, equity options, commodity options and FX options. 
 
Where the trade element in FpML represents the non-economic information about a transaction 
(e.g., identifying information, documentation, etc...), the “Product” type represents the 
economic details of a transaction. While the possible “trade” details are similar for most or all 
transactions, the “Product” details differ depending on the type of financial product that was 
traded. 
 
The basic trade structure is as follows: 
 

<trade> 
 <tradeHeader> . . . </tradeHeader> 
 <product> . . . </product> 
 <!-- more trade information --> 
</trade> 

 
However, after version 1.0 the “product” keyword described above never actually appears in 
the FpML instance document. Instead, the “product” tag is an “abstract” tag that is a member 
of a “substitution group”. In practical terms, this means that instead of putting in a “product” 
tag, you can put in any element that is a member of the “product” substitution group. 
 
For example, “creditDefaultSwap” is a member of this group, as is “equityOption”. That means 
that either of the following is allowed in FpML: 
 

<trade> 
 <tradeHeader> . . . </tradeHeader> 
 <creditDefaultSwap> . . . </creditDefaultSwap> 
 <!-- more trade information --> 
</trade> 

 
Or: 

<trade> 
 <tradeHeader> . . . </tradeHeader> 
 <equityOption> . . . </equityOption> 
 <!-- more trade information --> 
</trade> 



FpML 5 User Guide 2012 Edition 
 

  78

The first signals that the trade is a credit default swap, while the second signals that the trade is 
an OTC equity option. 
 

 

 
Info 

See the FpML Products Framework insert at the end of the user guide for an 
overview of all the products and their base types.  
 
A softcopy can be downloaded at  
Http://www.fpml.org/documents/FpML5-products-framework.pdf 

 

Strategies 
In addition, there is a special kind of product called a “Strategy” that combines other products. 
This allows the creation of complex structures by combining existing products. 
 
The following is an example of a strategy, combining an FX option with an FX forward to 
create a delta-hedged option: 
 

<trade> 
 <tradeHeader> . . . </tradeHeader> 
<strategy> 

  <productType>Delta-Hedge</productType> 
  <fxSimpleOption> 
   <productType>European FX Option</productType> 
   <buyerPartyReference href="DEF"/> 
   <sellerPartyReference href="ABC"/> 
   <!-- more fx option details here -- > 
  </fxSimpleOption> 
  <fxSingleLeg> 
   <!-- FX spot/forward details here --> 
  </fxSingleLeg> 
 </strategy> 



FpML 5 User Guide 2012 Edition 
 

  79

6.2.2. Product Summary 
The following table contains a summary of the products covered by FpML, along with the 
FpML versions that the products were introduced in: 
 Asset Class Product Product Variants Since 
 n/a Strategy  3.0 
  genericProduct (formerly nonSchemaProduct in 5.0 and 5.1) (to represent an 

OTC derivative transaction whose economics are not fully described using an 
FpML schema.) 
standardProduct (to represent a standardized OTC derivative transaction 
whose economics do not need to be fully described using an FpML schema 
because they are implied by the product ID) 

5.2 (RV) 
5.3 

 

 

In
te

re
st

 R
at

e 
D

er
iv

at
iv

es
 

IRD bulletPayment*  2.0 

capFloor  2.0 
fra  1.0 
swap break clauses (cancelable, extendible, 

early termination), asset swap (since 
4.2), inflation swap (since 4.2) 
Brazilian swap (since 4.4) 

 

swaption American, European, Bermuda, 
Cash/Physical 

2.0 

 

F
or

ei
gn

 
E

xc
h

an
ge

 

FX fxSingleLeg Spot, Forward, Non-Deliverable 
Forwards 

3.0 

fxSwap  3.0 
fxOption (fxSimpleOption in 3.x/4.x) Knock-in and knock-out options, Side 

averaging rate option*, barrier option* 
3.0 

fxDigitalOption*  3.0 

termDeposit* Dual Currency Deposit 
 

4.0 

 

C
re

di
t 

D
er

iv
at

iv

CD creditDefaultSwap CDS index (since 4.1), CDS Basket 
(since 4.2), Loan CDS (since 4.3), CDS 
on Mortgage (since 4.3) 

4.0 

creditDefaultSwapOption 
 

 4.3 

 

E
qu

it
y 

D
er

iv
at

iv
es

 

Equity 
 

equityOption* various option features/exercise types 3.0 

equityOptionTransactionSupplement  4.1 

brokerEquityOption*  4.1 

equityForward  4.1 
returnSwap (formerly equitySwap)  4.0^ 
equitySwapTransactionSupplement  4.1 

Dividend dividendSwapTransactionSupplement  4.3 
Variance 
 

varianceSwap*  4.3 

varianceSwapTransactionSupplement  4.3 
varianceOptionTransactionSupplement  4.6 

Correlation correlationSwap  4.3 
 

 Bond Options bondOption bond, convertible bond 4.3 
 

C
om

m
o-

d
it

ie
s 

 

 commoditySwap financially and physically settled (4.6) 
 

4.5 

commodityForward bullion 
 

4.6 

commodityOption financially-settled, forwards 4.8 
commoditySwaption physically-settled options (formerly in 

the commodityOption from 4.8 until 
5.2) 

5.3 

* Product not supported in the Transparency view of version 5. 



FpML 5 User Guide 2012 Edition 
 

  80

 
^ Indicates that the product was first defined in this version as equitySwap, however, the 
structure was changed substantially in 4.1 and specially 4.2, when it was renamed returnSwap. 
New implementations are strongly advised to use 4.2 or above for this product. 
 
The following equity products should be modeled as follows in the transparency view: 

- equityOption -> use equityOptionTransactionSupplement 
- brokerEquityOption -> use equityOptionTransactionSupplement 
- varianceSwap -> use varianceSwapTransactionSupplement) 
 

 
 

 
FpML 5 

 

The FX product model has been extensively enhanced and refactored in 
FpML 5.1.  
 
New implementations should consider using the latest FpML 5.x FX 
framework instead of the 4.x model. 

6.2.3. Adding New Products 
To create a new product in your own namespace that can be used in an FpML trade, you should 
do the following: 

 Create a type derived from the “Product” type, e.g., “MyProduct”. 
 Create a new global element, e.g., “myProduct”, whose type is “MyProduct”. Make 

that element a member of the “fpml:product” substitution group. 
 
See Section 8 for more information on extending FpML. 
 

6.2.4. ISDA Product Taxonomy 
As part of the ongoing effort to improve the OTC derivatives infrastructure, ISDA developed 
an implementation plan mid-2011 to define a standardized taxonomy (classification) for OTC 
derivatives. The ISDA OTC Taxonomies support regulatory mandates to increase transparency 
through public and regulatory reporting. The taxonomies can be downloaded from the ISDA 
website at http://www.isda.org/otc-taxonomies-and-upi/ 
 
The final taxonomies are included in the FpML data standard to facilitate the reporting process. 
The Product Taxonomy Scheme (http://www.fpml.org/coding-scheme/product-taxonomy) 
based on the latest version of the ISDA Product Taxonomy is set as the default scheme for the 
productType element in FpML. E.g., 
 
<requestConfirmation> 
... 
<trade> 

    ... 
      <swap> 
        <productType>InterestRate:IRSwap:FixedFloat</productType> 
        ... 
        <assetClass>InterestRate</assetClass> 
 



FpML 5 User Guide 2012 Edition 
 

  81

6.3. Underlying Assets  

6.3.1. Usage 
In addition to representing complex derivative products, FpML has a representation of a fairly 
large number of simple, standardized financial instruments. These instruments, called 
“UnderlyingAssets” in FpML, can be used for a variety of purposes: 

 As underlying assets in various derivatives, including: 
o Equity options 
o Equity swaps 
o Asset swaps 

 As reference obligations in credit default swaps 
 For a variety of purposes in pricing and risk, including: 

o For describing curve inputs 
o For describing benchmark asset prices 

 
It is also expected that use of the underlying assets will increase in future versions of FpML. 

6.3.2. Underlying Asset Substitution Framework 
The underlying asset framework is very similar to the product framework. In places where 
underlying assets are used, a substitution group can allow the asset to be substituted as 
required. However, underlying assets are different from “products” in the sense that all are 
derived from UnderlyingAsset rather than Product. In addition, UnderlyingAsset defines some 
standard data fields available for all assets. 
 
For example, “equity” is an FpML underlying asset, and here is a use of “equity” as a basket 
component:  
<basketConstituent> 
  <equity> 

<instrumentId instrumentIdScheme="http://www.fpml.org/coding-
scheme/external/instrument-id-bloomberg">TIT.ME</instrumentId> 

 <description>Telecom Italia spa</description> 
 <currency>EUR</currency> 
<exchangeId exchangeIdScheme="http://www.fpml.org/coding-

scheme/external/exchange-id-MIC">Milan Stock Exchange</exchangeId> 
 </equity> 

<constituentWeight>        
   <openUnits>432000</openUnits> 

</constituentWeight> 
</basketConstituent> 
 
However, if instead a “bond” (a different FpML underlying asset) were desired, the FpML 
might look like: 
<basketConstituent> 
 <bond> 

<instrumentId 
instrumentIdScheme="http://www.fpml.org/spec/2002/instrument-id-
ISIN-1-0">JP310860A032</instrumentId> 

<couponRate>0.0213</couponRate> 
<maturity>2011-03-08</maturity> 

 </bond> 
 <constituentWeight>        
   <openUnits>432000</openUnits> 
 </constituentWeight> 
</basketConstituent> 



FpML 5 User Guide 2012 Edition 
 

  82

6.3.3. Summary of Underlying Assets 
The following table summarizes the underlying assets available in FpML. All of these assets 
are defined in the FpML asset subschema, e.g., fpml-asset-5-3.xsd. 
 
Underlying Asset Description 
bond a security typically delivering interest coupon payments and 

requiring the repayment of a principal amount at its maturity 
cash an asset in monetary form, typically held in a bank account 
commodity a commodity underlying asset 
convertibleBond a bond that can under specified circumstances be converted into 

equity (e.g., common stock) in the issuer 
deposit a term deposit, a money market instrument of fixed duration 

yielding a specific interest rate 
equity an ownership share in an entity, typically common stock 
exchangeTradedFund a fund whose units can be traded on an equity exchange 
future identifies the underlying asset when it is a listed future contract (a 

standardized, daily-settled contract traded on an exchange for the 
purchase or sale of an asset at some specified date in the future) 

fx identifies a simple underlying asset type that is an FX rate. Used 
for specifying FX rates in the pricing and risk 

index an asset whose value is based on the value of a set of instruments, 
typically equities 

loan an underlying asset that is a loan 
mortgage a mortgage backed security 
mutualFund a pooled investment vehicle that takes positions in a variety of 

financial instruments, typically equities 
rateIndex an interest rate index, such as USD LIBOR 
simpleFra a simple, benchmark Forward Rate Agreement 
simpleIrSwap a simple, benchmark Interest Rate Swap 
simpleCreditDefault 
Swap 

a simple, benchmark Credit Default Swap 

 



FpML 5 User Guide 2012 Edition 
 

  83

7. The FpML Messaging Framework 
This section describes how business processes are represented in FpML 5, summarizing them 
into several categories, depending on where they happen within the trade lifecycle. 
 
Beyond this introduction, the FpML specification provides more information in the Business 
Process Architecture section. It discusses the message types and structures in detail and 
describes several business processes using interaction diagrams. Developers interested in better 
understanding these business process definitions are directed to that documentation. 

7.1. Messages 
Message documents are intended to be used for communicating between firms or systems. 
They are represented using a variety of types, as described below. 
 
Following are common characteristics of messages: 

 Message documents are divided into three main types: 
o Notification messages are used to send unsolicited information. 
o Request messages are used to ask for something to be done. 
o Response messages are used to reply to “Request” messages. 

 All messages have a message header. A message header contains information about the 
sender, the recipient, and various pieces of message identification information.  
 

Sample message header 
 
<executionNotification fpmlVersion=“5-3”...> 
 <header> 
 <messageId messageIdScheme="http://abc.com/msg">A1</messageId> 
 <inReplyTo messageIdScheme="http://def.com/msg">B2</inReplyTo> 
 <sentBy>ABCDUS33</sentBy> 
 <sendTo>DEFGGB2L</sendTo> 
 <creationTimestamp>2012-06-12T15:38:00-00:00</creationTimestamp> 
 <expiryTimestamp>2012-06-12T18:38:00-00:00</expiryTimestamp> 
 </header> 
 <!-- message content goes here --> 
</exectutionNotification> 
 



FpML 5 User Guide 2012 Edition 
 

  84

7.1.1.1.Base Messages 
The following diagram shows the main types of messages (e.g., request / response / 
notification). All FpML messages are derived from one of these base message types. 
 

 

Three new messages subtypes of Request Message have been introduced in FpML 5: 

 Correctable Request Message: defines the content model for a request message that can 
be subsequently corrected or retracted. 

 Non Correctable Request Message: defines the content model for a request message 
that cannot be subsequently corrected or retracted. 

7.1.2. Message Naming Convention / Patterns 
FpML defines a general pattern of messages (Request or Notification, Acknowledgement, 
Exception, Retraction and optionally, Response/Status) to ensure consistent processes across 
trades and post-trade events, observable completion, consistent message correlation and 
retraction and consistent error reporting. 

Messages follow this naming convention, where Xxx represents the name of the process: 

• requestXxx 
• xxxAcknowledgement 
• xxxException 
• requestXxxRetracted 
• xxx[Status] or xxx[Response] 

For the consent negotiation process, for example, the messages include: 

• requestConsent – initiating request 
• consentAcknowledgement – acknowledgement 
• consentException – exception 



FpML 5 User Guide 2012 Edition 
 

  85

• requestConsentRetracted – retraction of the request 
• consentGranted – response 
• consentRefused – response 

 
See the FpML Messaging Framework insert (at the end of the user guide) for a full list of 
supported messages. 

7.1.3. Message Correlation 
Message correlation is essential to link successive messages together. As noted earlier, there 
were issues with inconsistent message correlation in version 4.x. In FpML 5.x, there is a single, 
well-defined way to link successive messages (such as corrections or retractions of requests or 
notifications). Successive messages are “correlated” (linked together) using a new, explicit 
correlationId element. The correlation ID is assigned by the initiator. Subsequent responses use 
the correlation ID to link back to the original request. 

7.2. Business Processes 
Messages are divided into a series of business processes. Because of the large number of 
messages, the messages are divided into a number of categories, according to whether the 
messages are sent prior to trade execution, during the confirmation process, or afterward.  

The following diagram illustrates the (processes) and the category (i.e. “view”) where they can 

be found (more information on views in the next section) 

 

For example, consent negotiation (getting permission to do something) is a business process. 

For each business process, in general the following messages will be available: 

o process request or notification message – to initiate the process. In some cases the 
process may be initiated by a notification message rather than a request message. 

o process acknowledgment message – to acknowledge that the request or notification 
was received. 

o process exception message – to report that a request or notification cannot be 
processed. 

o process request/notification retracted message – to withdraw the original request or 
notification. 

o possibly, process-specific response messages 

  



FpML 5 User Guide 2012 Edition 
 

  86

7.3. Views 
A view is a version of the schema focused on a particular business area or application. Views 
are intended to provide multiple product representations, each one of them appropriate for the 
business process where it is defined. 
 
The rationale for the concept of "views" is to provide a consistent representation of key 
information across many types of business process, while allowing the set of mandatory and 
optional data to vary between processes. For example, a firm reporting on an interest rate swap 
may not provide information such as: payment date and reset date definitions on the floating 
side, or the business day adjustments that were used, etc. However, all of these pieces of 
information are crucial for confirming that swap once it is traded. So for confirmation view we 
want these pieces of information to be mandatory, while they are optional for pre-trade view. 

FpML maintains a single master schema from which multiple views can be generated. The 
following diagram illustrates how the different versions of the schema, or views, are generated 
from the master schema using a conversion script. The master schema contains annotations, 
with view-specific instructions (e.g., make this element optional in view X, put this element 
only in view Y) 
 

 
 
 

 End users will use a view-specific schema, not the master schema. 
 

 In version 5.1 there are two views: 
o The “Confirmation” view: This view is intended to be used for confirming the 

precise details of contracts and post-trade business events. This view is 
intended to have similar characteristics to the FpML versions 1-4 product 
representation, i.e. a very detailed product representation capturing the details 
needed for a transaction confirmation. 

o The “Reporting” view: This view is intended to be used for reporting trading 
and business activities and positions (including as part of STP flows), as well 
as processes such as reconciliation. This view has a moderately loose product 
representation; it requires key economic information such as the notional, key 
dates, and parties, but leaves other information optional. 

 



FpML 5 User Guide 2012 Edition 
 

  87

 In version 5.3, two additional views are added to address regulatory reporting: 
o The “Transparency” view is intended to be used for reporting price forming 

information about executed transactions to the public by reporting parties and 
execution platforms. This view is intended to provide only the key product 
economics that are appropriate for standardized transactions, and not 
customizations and detailed information not required for price discovery, for 
example details of date adjustment rules and the like.. 

o The “Recordkeeping” view is intended to be used for reporting the Primary 
Economic Terms of derivative transactions to Swaps Data Repositories from 
entities including market participants, execution platforms, and clearing or 
confirmation services. This view is intended to have similar characteristics to 
the FpML "confirmation view" product representation, i.e. a very detailed 
product representation capturing the details needed for a transaction valuation; 
it may not include all documentation and legal terms. 

7.4. The Use of Multiple Namespaces 
 The FpML 5.x grammar is distributed as multiple XML schemas, each of which is 

specialized to suit a particular set of related business processes. This allows product, and 
other business object, representations to be adjusted to each usage (e.g. strict for 
confirmation, looser for reporting). Each view has a different namespace to distinguish 
between the different types of applications. 
 
http://www.fpml.org/FpML-5/confirmation  (confirmation view) 
http://www.fpml.org/FpML-5/reporting    (reporting view) 
http://www.fpml.org/FpML-5/recordkeeping  (recordkeeping view) 
http://www.fpml.org/FpML-5/transparency  (transparency view) 
 

 Starting in version 5.0, minor FpML versions share the same namespace. For example, the 
namespace for the confirmation view is the same for FpML 5.0, 5.1, 5.2 and 5.3. 
 
http://www.fpml.org/FpML-5/confirmation  (shared namespace across minor versions) 
http://www.fpml.org/FpML-5/transparency  (introduced in 5.3, shared onward) 
 
This feature enables documents to have greater longevity. For example, with the new 5.x 
schemas it is possible to process documents against future compatible versions of the 
schema. This feature is useful in the task of migrating across time or supporting multiple 
versions simultaneously. 

7.5. Multiple Root Elements 
Different element names are used to distinguish between different message types. 
<requestExecution>, <executionAdvice>, <clearingStatus>, <positionReport> are just a few of 
the many root elements available in FpML 5.x. See the FpML Messaging Framework  insert (at 
the end this user guide) for a complete list of root element names available. 

  



FpML 5 User Guide 2012 Edition 
 

  88

7.6. Generic Messaging / Multi-Event Workflows 
FpML 5 introduces the idea of Generic Business Processes to address limitations in the 
version 4 framework. 
 
In FpML 5, most workflows are designed to work consistently for a number of events, 
including new trades and post-trade events such as novations, amendments, and terminations.  
For example, one set of messages (e.g., execution or confirmation or allocation) can be reused, 
for many trading events (different payloads e.g., trade, amendment, option) using the same 
flow of messages. The messages can be applied in a number of different contexts. For example, 
the same <requestExecution> message can be used to execute an increase, an amendment, a 
termination, a novation, a trade. 
 
 The following diagram illustrates this concept of a generic message carrying different 
payloads. 
 

 
 

  



FpML 5 User Guide 2012 Edition 
 

  89

7.7. Generic (Multi-Event) Flows 
Each view contains a different set of business processes that are applied to the following 
events. All events use the same messages to support the processes. 

 

7.8. Pre-Trade 
Pre-trade business processes are not supported in FpML 5.  
Some draft request for quote messages have been developed in the master schema, however, 
they haven’t received enough review from the community. As a result, the Pre-trade view has 
not been officially published in FpML 5. 

7.9. Confirmation 
The Confirmation view supports the following business processes: 

 Execution 
 ExecutionAdvice 
 Trade Change 
 Consent Negotiation 
 Confirmation 
 Clearing 
 Allocation 
 Option Exercise/Expiry 

 
For example, the following messages are available for these processes: 
Execution Process 

 requestExecution 
 requestExecutionRetracted 
 executionAcknowledgement 
 executionException 



FpML 5 User Guide 2012 Edition 
 

  90

 executionNotification 
 executionRetracted 
 Confirmation Process 

 requestConfirmation 
 requestConfirmationRetracted 
 confirmationAcknowledgement 
 confirmationException 
 confirmationRefused 
 confirmationStatus 
 confirmationDisputed 

7.10. Reporting 
The FpML reporting capability is designed to allow institutions to report details about 
derivative portfolios with a variety of levels of granularity, in a format consistent with the 
normal messaging and confirmation specification. 
The reporting capability is intended to support a number of use cases, including but not limited 
to: 

 Regulatory reporting 
 Reporting between counterparties for reconciliation purposes 
 Reporting from service providers to clients on portfolios maintained by the service. 

 
Some of the main reports include: 

 Position Report - The position report is intended to allow a firm to report the current 
status of a portfolio of positions. 

 Position Activity Report - The position activity report is a variation of the Position 
Report that is specifically targeted to reporting changes in position, for example 
changes between two points in time. 

 Event Activity Report - The Event Activity Report allows a firm to report on a series 
of related or unrelated business events, such as trades, amendments, novations, or 
terminations. These events will typically be applicable for a specific context (e.g. a 
single account or product) over a specific time period (e.g. a day or month). It does not 
allow valuation information or servicing events to be reported. 

 Reset report, added in FpML 5.0, allows a firm to report on the fixing of a floating 
rate index, and to indicate the positions that are affected by the fixing. 

 Cashflow Matching - The FpML standard for cashflow matching is aimed at 
providing a messaging standard to support the ISDA guideline developed by the ISDA 
Operations Committee. 

 
The Reporting view supports the following business processes: 

 Reporting 
 Valuation 
 Portfolio Reconciliation 
 Cash Flow Matching 
 Collateral Management (see next section) 

 
For example, the following valuation messages are defined: 

 requestValuationReport 
 valuationReport 



FpML 5 User Guide 2012 Edition 
 

  91

 valuationReportAcknowledgement 
 valuationReportException 

7.11. Recordkeeping 
For the recordkeeping view, a set of messages are defined for non-public execution reporting: 

 nonpublicExecutionReport 

 nonpublicExecutionReportRetracted 

 nonpublicExecutionReportAcknowledgement 

 nonpublicExecutionReportException 
The non-public execution report message is provided for reporting parties and agents (such as 
execution platforms) to report on the execution of trades to Swaps Data Repositories for 
regulatory reporting purposes. The non-public execution report contains a complete 
representation of the economic terms of each product. 
 

 valuationReport – allows valuation information to be supplied for a number of trades 
at the same time.  This valuation information can include mark to markets, quotations, 
risk measures, and other observed or calculated values. 

 
 A set of verification messages, shared across multiple views are also available.   

These messages allow a firm to either verify or dispute records contained within an 
SDR.  See “shared messages” section below. 

7.12. Transparency 
For the transparency view, the following messages are defined for public execution reporting: 

 publicExecutionReport 

 publicExecutionReportRetracted 

 publicExecutionReportAcknowledgement 

 publicExecutionReportException 
The public execution report message is provided for reporting parties and agents (such as 
execution platforms) to report on the execution of trades to the public, via Swaps Data 
Repositories or third party messaging services. The public execution report contains a 
simplified version of the product model covering only the commonly used terms that affect 
pricing. 
 

 A set of verification messages, shared across multiple views are also available. See 
“shared messages” section below. 

7.13. Shared Messages  
A number of messages are shared across multiple views where applicable: 
 

 messageRejected – an exception message sent to inform another system that some 
exception has been detected. 



FpML 5 User Guide 2012 Edition 
 

  92

 requestRetransmission –  a message to request that a message be retransmitted.  The 
original message will typically be a component of a group of messages, such as a 
portfolio or a report in multiple parts. (not available in the transparency view) 

 requestEventStatus /eventStatusResponse  – a set of messages allowing one party to 
query the status of one event (trade or post-trade event) previously sent to another 
party. 

 serviceNotification –  a notification messages that allow a service to report 
information on status and other alerts to users. 

 verificationStatusNotification/Acknowledgement/Exception – verification status 
messages support the ability for users to dispute and verify positions in the SDR, 
attached is the reference to the regulation that they derived this requirement from. 

 
 

 
Info 

See the FpML Messaging Framework insert at the end of the user guide for 
the full list of messages available for the different views.  
 
The softcopy can be downloaded at  
Http://www.fpml.org/documents/FpML5-messaging-framework.pdf  

7.14. Collateral Management 
The FpML standard has been extended to cover the following collateral management 
processes: 

 Margin Call  
 Collateral Substitution  
 Interest payment 

Collateral messages were introduced in version 5.1 and were based on the requirements defined 
by the ISDA Collateral Committee in the November 12, 2009 publication Standards for the 
Electronic Exchange of OTC Derivative Margin Calls 
(http://www.isda.org/c_and_a/pdf/Electronic-Messaging.pdf). 

7.15. Loan Syndication 
 
FpML versions 5.0-5.3 do not include support for Syndicated Loans. A new, refactored loan 
framework is being developed and may be included in a later version of FpML. 
The Loan messaging framework continues to be developed in FpML 4.x series but is being 
refactored in FpML 5. Firms who have not started implementation should consider loan 
support in FpML 5. 
 



FpML 5 User Guide 2012 Edition 
 

  93

8. Customizing FpML 

8.1. Introduction 

8.1.1. Purpose of the Section 
This section discusses techniques for adjusting FpML to better meet specific application 
requirements. This includes adding information not included in FpML as well as preventing 
FpML features from being used when they are not required.  
 
Many of the techniques described here are described in more detail in the FpML Architecture 
Specification 3.0, section 6 (http://www.fpml.org/spec).  
These techniques apply to FpML 4.x and 5.x. 

8.1.2. Overview 
The section is organized as follows:  

 Wrapping: a traditional approach for extending FpML. 
 Type extension: a more modern approach for extending FpML. 
 Type restriction: a more modern approach for constraining FpML. 
 Extending product coverage: detail on adding product coverage. 
 Extending message/business process coverage: detail on adding messages. 
 Migrating extensions: a discussion on managing extensions to FpML as FpML 

evolves. 

8.2. Wrapping 

8.2.1. Explanation 
Wrapping is a traditional technique for extending FpML. It has been used by a number of firms 
implementing FpML since the earliest versions of FpML. 
 
In wrapping, the FpML is contained within an XML “wrapper” that contains elements that are 
not available in FpML but that are required for the application. Below is a simplified example: 
 
<abcML version=”0.1”> 
 <additionalData>123</additionalData> 
 <moreAdditionalData>456</moreAdditionalData> 
   <trade> 
 <dataDocument fpmlVersion=“5-3”…> 
   <!-- detail omitted --> 
  </trade> 
  <!-- parties omitted --> 
 </dataDocument> 
<abcML> 

 
 
 
 
 
 



FpML 5 User Guide 2012 Edition 
 

  94

 
The following diagram illustrates the “wrapping” approach for extending FpML: 

 

8.2.2. Advantages and Disadvantages 
Some of the advantages and disadvantages of the “wrapping” approach include: 

 Pros 
o This approach is straightforward and simple. 
o It has been used widely for several years by a number of dealers and has been 

proved to be successful. 
o The distinction between customized and standard FpML is clear. 

 Cons: 
o It is not easy to add elements to structures that are repeated more than once. 
o Linking extensions to the original data can be hard. 
o This approach does not support restricting the contents of the FpML. 

 
Because of the disadvantages listed above, the FpML Architecture 3.0 does not recommend 
using the “wrapping” approach for new implementations. 

8.3. Extending Type Content 
The recommended approach for extending FpML is to extend the types defined by FpML with 
new elements that are in the customizing firm’s namespace. This approach is documented in 
the FpML Architecture 3.0 document in Section 6.4. 
 

 
 
 
 
 
 
 

 
 

FpML 

Extension

Extension

Extension

FpML Namespace Custom Namespace 

FpML 

Customizing XML 



FpML 5 User Guide 2012 Edition 
 

  95

8.3.1. Example 
In FpML, the “AdjustableDate” type is defined as having an unadjusted date and date 
adjustments. Let’s assume that ABC, a firm implementing an FpML-based application, would 
like to add a new element, “adjustedDate”, to that type. 
 
The type extension would be defined in the ABC’s schema (AbcML) as follows: 
 
<xsd:schema  
  xmlns = "http://www.abc.com/AbcML" 
  xmlns:fpml = "http://www.fpml.org/FpML-5/confirmation" 
  xmlns:dsig = "http://www.w3.org/2000/09/xmldsig#" 
  targetNamespace = "http://www.abc.com/AbcML" 
  xmlns:abc = "http://www.abc.com/AbcML" 
  xmlns:xsd = "http://www.w3.org/2001/XMLSchema" 
  elementFormDefault = "qualified" 
  attributeFormDefault = "unqualified"> 
 
 <xsd:import namespace= "http://www.fpml.org/FpML-5/confirmation"  
  schemaLocation="fpml-main-5-3.xsd" /> 

  
<!-- ***** Extension of AdjustableDate ********* --> 
 

 <xsd:complexType name = "AdjustableDate"> 
  <xsd:annotation> 
   <xsd:documentation>ABC extension to FpML Adjustable Date 
    type</xsd:documentation> 
  </xsd:annotation> 
  <xsd:complexContent> 
   <xsd:extension base = "fpml:AdjustableDate"> 
    <xsd:sequence> 
     <xsd:element name="adjustedDate" type="xsd:date" 

minOccurs=”0” > 
      <xsd:annotation> 
       <xsd:documentation xml:lang="en">The date after 
        adjustment using the adjustment conventions.  
       </xsd:documentation> 
      </xsd:annotation> 
    </xsd:sequence> 
   </xsd:extension> 
  </xsd:complexContent> 
 </xsd:complexType> 
 
Then an AbcML document could use the new type in existing FpML products by using the 
“xsi:type” attribute to indicate that the new type is being used. The new element is in the “abc” 
namespace, so it requires an appropriate prefix. For example, assuming that the AbcML 
schema were being used and the “abc” prefix pointed to that namespace, in a payment the user 
could do the following: 
 
 



FpML 5 User Guide 2012 Edition 
 

  96

      
<dataDocument fpmlVersion = “5-3” 
  xmlns = "http://www.fpml.org/FpML-5/confirmation" 
  xmlns:abc = "http://www.abc.com/AbcML" 
  xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"> 
  … 
 

<payment> 
   <payerPartyReference href=“abc”/> 

        <receiverPartyReference href=“def”/> 
         <paymentAmount> 
       <currency>GBP</currency> 
       <amount>15000000.00</amount> 
        </paymentAmount> 
        <paymentDate xsi:type=”abc:AdjustableDate”> 
      <unadjustedDate>2012-01-17</unadjustedDate> 
          <dateAdjustments> 

   <businessDayConvention>FOLLOWING</businessDayConvention> 
           <businessCenters> 
               <businessCenter>GBLO</businessCenter> 
               <businessCenter>USNY</businessCenter> 
           </businessCenters> 
      <abc:adjustedDate>2012-01-18</abc:adjustedDate> 
         </dateAdjustments> 
    </paymentDate> 
   </payment> 

8.3.2. Advantages and Disadvantages 
 Pros 

o Allows extension to existing FpML elements in-place. 
o Supports extending repeated elements. 
o Extensions are closely linked to the original FpML, making it easy to 

determine the relation of the extension to the original FpML. 
o Extensions are clearly documented in the instance documents because they are 

in a different namespace. 
o It is relatively easy to migrate extensions to a new version of FpML. 
o This approach is a recommended approach in the FpML 3.0 Architecture. 

 Cons 
o Requires the use of multiple namespaces and namespace-aware applications. 
o XPath expressions may be slightly longer due to the need for namespace 

prefixes. 

8.4. Restricting Type Content 
In many cases, specific implementations may wish to restrict the ability of users to use specific 
elements or options. To implement these restrictions, implementers may use the schema 
“redefine” capability to remove optional elements, make optional elements mandatory, etc. 
This technique is described in detail in the FpML Architecture Specification 3.0, in Sections 
6.5 to 6.7. 



FpML 5 User Guide 2012 Edition 
 

  97

8.5. Extending Product Coverage 
The first step in creating a new product is the creation of a new product type based on the 
FpML “Product” type. 

8.5.1. Create a New Type 
First, create a new product type based on the FpML “Product” type. 
 
In the following example we create a type called “Forward” that is a forward purchase/sale of 
an FpML underlying asset (such as a bond or a stock). Note that this product is simplified 
compared what you might require for a real implementation, e.g., it does not include any 
support for settlement date or amount, ignores commissions and accrued interest, for example. 
However, it does convey some of the information one might require for such a product, such as 
the buyer and seller, the asset, the quantity, the price (and provision for the price units, etc…), 
and the forward sale date. 
 
<xsd:complexType name = "Forward"> 
 <xsd:annotation> 
  <xsd:documentation>A forward transaction on an 
  underlying asset.</xsd:documentation> 
 </xsd:annotation> 
 <xsd:complexContent> 
  <xsd:extension base = "fpml:Product"> 
   <xsd:sequence> 
    <xsd:group ref="fpml:BuyerSeller.model"/> 
    <xsd:element ref=”fpml:underlyingAsset” /> 
    <xsd:element name=”quantity” type=”xsd:decimal”/> 
    <xsd:element name=”price” type=”xsd:decimal” /> 
    <xsd:group ref=”fpml:QuotationCharacteristics.model”/> 
    <xsd:element name=”fwdDate” type=”fpml:AdjustableDate”/> 
   </xsd:sequence> 
  </xsd:extension> 
 <xsd:complexContent> 
</xsd:complexType> 
 
Next create a new global element that is a member of the “product” substitution group. This 
will allow the newly created product to be included in FpML trades and other places that 
require FpML products: 
 
<xsd:element name="forward" type="Forward"  
substitutionGroup="fpml:product"/> 

 



FpML 5 User Guide 2012 Edition 
 

  98

To use this product, reference it as “abc:forward”, for example: 
 

<trade> 
 <tradeHeader> 
  <! -- details deleted --> 
 </tradeHeader> 
 <abc:forward> 
  <buyerPartyReference href=”abc” /> 
  <sellerPartyReference href=”def” /> 
  <bond> 
   <!-- details omitted --> 
  <bond> 
  <abc:quantity>100</abc:quantity> 
  <abc:price>100.5</abc:price> 
  <quoteUnits>PctOfParValue</quoteUnits> 
  <abc:fwdDate> 
   <unadjustedDate>2012-01-14</undadjustedDate> 
   <dateAdjustments> 
    <!-- details omitted --> 
   </dateAdjustments> 
  </abc:fwdDate> 
 </abc:forward> 
</trade> 

 
Note that in the above example, the document is assumed to have its default namespace to be 
the FpML namespace, so no prefixes are required for FpML elements. This includes any 
elements that are included using FpML groups (such as the BuyerSeller.model or the 
QuotationCharacteristics.model), or referencing FpML substitution groups (such as the 
underlyingAsset substitution group). 
 
A different example is provided in the FpML Architecture Specification, Section 6.2. 

8.6. Extending an Existing Product 
The process for extending an existing product is similar to that described above, except that 
instead of extending “fpml:Product”, one extends the specific product, for example 
“fpml:Swap”. Then one has the choice of either creating a new member of the “product” 
substitution group, as described above, or not bothering, and just using the “xsi:type” attribute 
to indicate that a proprietary extension was used. In the first approach, the trade would have the 
following structure: 
 

<trade> 
 <tradeHeader> 
  <! -- details omitted --> 
 </tradeHeader> 
 <abc:swap> 
  <!-- details omitted --> 
 </abc:swap> 
</trade> 



FpML 5 User Guide 2012 Edition 
 

  99

In the second approach, the trade would look something like this: 
 

<trade> 
 <tradeHeader> 
  <! -- details omitted --> 
 </tradeHeader> 
 <swap xsi:type=”abc:Swap”> 
  <!-- details omitted --> 
 </swap > 
</trade> 

 
In either case the extended elements would normally be in the “abc” namespace and therefore 
would require a namespace prefix. 
 
This topic is also discussed in the FpML Architecture Specification, Section 6.2. 

8.7. Extending Messages 
To create a new message, one must create a new message Complex Type extending one of the 
existing base message types, namely: 

 NotificationMessage 
 RequestMessage 
 ResponseMessage 

 
For example, assume that one wants to create a new notification message called “Trade 
Report”, with a report date and a collection of trades, plus the associated parties. The message 
definition would be as follows: 
 
<xsd:complexType name = "TradeReport"> 
 <xsd:complexContent> 
  <xsd:extension base = "fpml:NotificationMessage"> 
   <xsd:sequence> 
    <xsd:element name="reportDate" type="xsd:date"/> 
    <xsd:element name="trade" type="fpml:Trade"  

maxOccurs="unbounded"/> 
    <xsd:element name="party" type="fpml:Party"  
    maxOccurs="unbounded"/> 
   </xsd:sequence> 
  </xsd:extension> 
 </xsd:complexContent> 
</xsd:complexType> 
 
Define a global element based on the new type: 
 
<xsd:element name=”tradeReport” type=”TradeReport/> 



FpML 5 User Guide 2012 Edition 
 

  100

Then you can use the new message tradeReport of type TradeReport (based on the FpML 
notification message)  e.g.: 
 
<abc:tradeReport fpmlVersion = “5-3” 
  xmlns = "http://www.fpml.org/FpML-5/reporting" 
  xmlns:abc = "http://www.abc.com/AbcML" 
  xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"> 
 
 <header> 
  <messageId messageIdScheme="http://abc.com/ms">A1</messageId> 
  <sentBy>ABCDUS33</sentBy> 
  <sendTo>DEFGGB2L</sendTo> 
  <creationTimestamp>2012-01-14T15:38:00-00:00</creationTimestamp> 
 </header> 
 <abc:reportDate>2012-01-01</abc:reportDate> 
 <abc:trade> 
   <!-- trade details omitted --> 
 </abc:trade> 
 <abc:trade> 
   <!-- trade details omitted --> 
 </abc:trade> 
 <abc:party> 
   <!-- party details omitted --> 
 </abc:party> 
 <abc:party> 
   <!-- party details omitted --> 
 </abc:party> 
</abc:tradeReport> 
  
Another example of this is provided in the FpML Architecture Specification, Section 6.3 

8.8. Versioning and Version Migration 
When customizing FpML, one needs to be aware that both FpML and the customizations will 
evolve over time. In the proprietary schema, a mechanism for tracking the version of the 
customizations needs to be specified, in addition to the mechanisms specified in FpML to 
record the FpML version. 
 
To migrate to a new version of the customizations without changing the FpML version, update 
the customized schema and its version mechanisms, preserving the references to FpML 
unchanged. 
 
To migrate to a new version of FpML, one will normally issue a new version of the customized 
schema that references the updated version of FpML.  
  
 
  



FpML 5 User Guide 2012 Edition 
 

  101



FpML 5 User Guide 2012 Edition 
 

  102



FpML 5 User Guide 2012 Edition 
 

  103



FpML 5 User Guide 2012 Edition 
 

  104

FpML 5 Underlying Assets 
 

Underlying Asset Description 
bond a security typically delivering interest coupon payments and 

requiring the repayment of a principal amount at its maturity 
cash an asset in monetary form, typically held in a bank account 
commodity a commodity underlying asset 
convertibleBond a bond that can under specified circumstances be converted into 

equity (e.g., common stock) in the issuer 
deposit a term deposit, a money market instrument of fixed duration 

yielding a specific interest rate 
equity an ownership share in an entity, typically common stock 
exchangeTradedFund a fund whose units can be traded on an equity exchange 
future identifies the underlying asset when it is a listed future contract (a 

standardized, daily-settled contract traded on an exchange for the 
purchase or sale of an asset at some specified date in the future) 

fx identifies a simple underlying asset type that is an FX rate. Used 
for specifying FX rates in the pricing and risk 

index an asset whose value is based on the value of a set of instruments, 
typically equities 

loan an underlying asset that is a loan 
mortgage a mortgage backed security 
mutualFund a pooled investment vehicle that takes positions in a variety of 

financial instruments, typically equities 
rateIndex an interest rate index, such as USD LIBOR 
simpleFra a simple, benchmark Forward Rate Agreement 
simpleIrSwap a simple, benchmark Interest Rate Swap 
simpleCreditDefault 
Swap 

a simple, benchmark Credit Default Swap 

(See page 82) 
 
 

Useful Links 
 
FpML Specification                 (schema, examples, documentation) 
http://www.fpml.org/spec/     
FpML Roadmap           (timing and coverage of past and upcoming versions) 
http://www.fpml.org/roadmap/roadmap.pdf  
FpML at a Glance 
http://www.fpml.org/documents/FpML5-at-a-glance.pdf  
FpML Products Framework 
http://www.fpml.org/documents/FpML5-products-framework.pdf  
FpML Messaging Framework  
http://www.fpml.org/documents/FpML5-messaging-framework.pdf 
FpML Messages Mapping from 4.x to 5.x 
http://www.fpml.org/documents/FpML-message-mapping-4x-vs-5x.xls  
 



FpML 5 Products (See page 79) 
 

 Asset Class Product Product Variants Since 
 n/a Strategy  3.0 
  genericProduct (formerly nonSchemaProduct in 5.0 and 5.1) (to represent an 

OTC derivative transaction whose economics are not fully described using an 
FpML schema.) 
standardProduct (to represent a standardized OTC derivative transaction 
whose economics do not need to be fully described using an FpML schema 
because they are implied by the product ID) 

5.2 (RV) 
5.3 

 

 

In
te

re
st

 R
at

e 
D

er
iv

at
iv

es
 

IRD bulletPayment*  2.0 

capFloor  2.0 
fra  1.0 
swap break clauses (cancelable, extendible, 

early termination), asset swap (since 
4.2), inflation swap (since 4.2) 
Brazilian swap (since 4.4) 

 

swaption American, European, Bermuda, 
Cash/Physical 

2.0 

 

F
or

ei
gn

 
E

xc
h

an
ge

 

FX fxSingleLeg Spot, Forward, Non-Deliverable 
Forwards 

3.0 

fxSwap  3.0 
fxOption (fxSimpleOption in 3.x/4.x) Knock-in and knock-out options, Side 

averaging rate option*, barrier option* 
3.0 

fxDigitalOption*  3.0 

termDeposit* Dual Currency Deposit 
 

4.0 

 

C
re

di
t 

D
er

iv
at

iv

CD creditDefaultSwap CDS index (since 4.1), CDS Basket 
(since 4.2), Loan CDS (since 4.3), CDS 
on Mortgage (since 4.3) 

4.0 

creditDefaultSwapOption 
 

 4.3 

 

E
qu

it
y 

D
er

iv
at

iv
es

 

Equity 
 

equityOption* various option features/exercise types 3.0 

equityOptionTransactionSupplement  4.1 

brokerEquityOption*  4.1 

equityForward  4.1 
returnSwap (formerly equitySwap)  4.0 
equitySwapTransactionSupplement  4.1 

Dividend dividendSwapTransactionSupplement  4.3 
Variance 
 

varianceSwap*  4.3 

varianceSwapTransactionSupplement  4.3 
varianceOptionTransactionSupplement  4.6 

Correlation correlationSwap  4.3 
 

 Bond Options bondOption bond, convertible bond 4.3 
 

C
om

m
o-

d
it

ie
s 

 

 commoditySwap financially and physically settled (4.6) 
 

4.5 

commodityForward bullion 
 

4.6 

commodityOption financially-settled, forwards 4.8 
commoditySwaption physically-settled options (formerly in 

the commodityOption from 4.8 until 
5.2) 

5.3 

* Product not supported in the Transparency view of version 5.  



FpML at a Glance 
 

 
 
174 


